题目:传送门
题意:有一个多边形的岛,岛的四周都是海,问你岛上的点到离它最近的海的距离最大是多少。
思路:
这题实际上就是求多边形的核的最大内切圆半径。
求多边形内核用半平面交即可,关键是求最大内切圆半径。
可以让多边形的每条边向里缩进 x 个单位得到新的多边形,判断其是否存在内核。
可以二分这个 x,若存在内核,移动左边界,否则,移动右边界。
考虑如何求直线向里缩进 d 个单位后的直线的表达式
我们知道直线上两点,那事情就很好办了。
两个点 y 的变化量 y = d * cos(θ)
两个点 x 的变化量 x = d * sin(θ)
然后我们已知变化前的直线的两点,我们就可以求出 cos(θ) 和 sin(θ) 了
#include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <queue> #include <map> #include <vector> #include <set> #include <string> #include <math.h> #define LL long long #define mem(i, j) memset(i, j, sizeof(i)) #define rep(i, j, k) for(int i = j; i <= k; i++) #define dep(i, j, k) for(int i = k; i >= j; i--) #define pb push_back #define make make_pair #define INF INT_MAX #define inf LLONG_MAX #define PI acos(-1) #define fir first #define sec second using namespace std; const int N = 1555; const double eps = 1e-8; struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } }; Point operator + (Point A, Point B) { return Point(A.x + B.x, A.y + B.y); } Point operator - (Point A, Point B) { return Point(A.x - B.x, A.y - B.y); } Point operator * (Point A, double p) { return Point(A.x * p, A.y * p); } Point operator / (Point A, double p) { return Point(A.x / p, A.y / p); } double Cross(Point A, Point B) { return A.x * B.y - A.y * B.x; } double Dot(Point A, Point B) { return A.x * B.x + A.y * B.y; } double Length(Point A) { return sqrt(Dot(A, A)); } /* 有向直线,它的左边就是对应的半平面 */ struct Line { Point p; /// 直线任意一点 Point v; /// 方向向量 double ang; /// 极角,即从x正半轴旋转到向量v所需要的角(弧度) Line() { } Line(Point p, Point v) : p(p), v(v) { ang = atan2(v.y, v.x); } bool operator < (const Line& L) const { return ang < L.ang; } }; /* 点p在有向直线L的左边 */ bool OnLeft(Line L, Point p) { return Cross(L.v, p - L.p) >= 0; } /* 二直线交点,假设交点唯一存在。*/ Point GLI(Line a, Line b) { Point u = a.p - b.p; double t = Cross(b.v, u) / Cross(a.v, b.v); return a.p + a.v * t; } int HPI(Line* L, int n, Point* Q) { sort(L, L + n); /// 极角排序 int st, ed; /// 双端队列的第一个元素和最后一个元素的下标 Point *p = new Point[n]; /// p[i]为q[i]和q[i+1]的交点 Line *q = new Line[n]; /// 双端队列 q[st = ed = 0] = L[0]; rep(i, 1, n - 1) { while(st < ed && !OnLeft(L[i], p[ed - 1])) ed--; while(st < ed && !OnLeft(L[i], p[st])) st++; q[++ed] = L[i]; /// 平行取内测那条 if(fabs(Cross(q[ed].v, q[ed - 1].v)) < eps) { ed--; if(OnLeft(q[ed], L[i].p)) q[ed] = L[i]; } if(st < ed) p[ed - 1] = GLI(q[ed - 1], q[ed]); } while(st < ed && !OnLeft(q[st], p[ed - 1])) ed--; if(ed - st <= 1) return 0; p[ed] = GLI(q[ed], q[st]); int m = 0; rep(i, st, ed) Q[m++] = p[i]; return m; } void change(Point A, Point B, Point &C, Point &D, double p) { /// 求A,B两点向里移动d距离后的两点C,D double len = Length(B - A); double addx = (A.y - B.y) * p / len; double addy = (B.x - A.x) * p / len; C.x = A.x + addx; C.y = A.y + addy; D.x = B.x + addx; D.y = B.y + addy; } Point P[N], Q[N]; Line L[N]; void solve() { int n; while(scanf("%d", &n)) { if(n == 0) return ; rep(i, 0, n - 1) scanf("%lf %lf", &P[i].x, &P[i].y); double l = 0.0, r = 100000.0, ans = 0.0; while(r - l >= eps) { double mid = (l + r) / 2.0; rep(i, 0, n - 1) { Point A, B; change(P[i], P[(i + 1) % n], A, B, mid); L[i] = Line(A, B - A); } int flag = HPI(L, n, Q); if(flag == 0) r = mid - eps; else { ans = mid; l = mid + eps; } } printf("%.6f ", ans); } } int main() { // int _; scanf("%d", &_); // while(_--) solve(); solve(); return 0; }