圆环面螺线
#http://xuxzmail.blog.163.com/blog/static/25131916200976114621705/ #Toroidal spiral vertices = 1000 t = from 0 to (2*PI) r = 5 n = 20 x = (r+sin(20*t))*cos(t) y = (r+sin(20*t))*sin(t) z = cos(n*t) r = 10; x = x*r y = y*r z = z*r
在前面讲了N叶结,当N值越大时,你会发现整个图形越像一个圆环.这一节就讲其他几种绕在圆环上的曲线.
vertices = 12000 t = from 0 to (64*PI) p = rand_int2(2, 32) q = rand_int2(2, 32) r = 2 + cos(q/p*t) x = r*sin(t) y = sin(q/p*t) z = r*cos(t) r = 0.5 + 0.5*sin(t) g = 0.5 + 0.5*y b = 0.5 + 0.5*cos(t)
另一个圆环上的曲线
#http://www.mathcurve.com/courbes3d/solenoidtoric/solenoidtoric.shtml vertices = 10000 t = from 0 to (20*PI) n = rand2(0.5, 10) a = rand2(5, 10) b = rand2(1, 5) x = (a + b*cos(n*t))*cos(t) z = (a + b*cos(n*t))*sin(t) y = b*sin(n*t)
knot(37)
vertices = 10000 t = from 0 to (6*PI) p = 3 q = 7 r = 2 + cos(q/p*t) x = r*sin(t) y = sin(q/p*t) z = r*cos(t) r = 0.5 + 0.5*sin(t) g = 0.5 + 0.5*y b = 0.5 + 0.5*cos(t)