• python2实现RSA算法


    1. 熟悉RSA算法,理解其原理

    2.网上找相关资料实现RSA算法

     

    Python2+pycharm

    算法基本思路:

    1.公钥与私钥的生成:

    (1)随机挑选两个大质数 p 和 q,构造N = p*q;

    (2)计算欧拉函数φ(N) = (p-1) * (q-1);

    (3)随机挑选e,使得gcd(e, φ(N)) = 1,即 e 与 φ(N) 互素;

    (4)计算d,使得 e*d ≡ 1 (mod φ(N)),即d 是e 的乘法逆元。

    此时,公钥为(e, N),私钥为(d, N),公钥公开,私钥自己保管。

    2.加密信息:

    (1)待加密信息(明文)为 M,M < N;(因为要做模运算,若M大于N,则后面的运算不会成立,因此当信息比N要大时,应该分块加密)

    (2)密文C = Mmod N

    (3)解密Cd mod N = (Me)d mod N = Md*e mod N ;

    要理解为什么能解密?要用到欧拉定理aφ(n) ≡ 1 (mod n),再推广:aφ(n)*k ≡ 1 (mod n),得:aφ(n)*k+1 ≡ a (mod n)

    注意到 e*d ≡ 1 mod φ(N),即:e*d = 1 + k*φ(N)。

    因此,Md*e mod N = M1 + k*φ(N) mod N = M

    我的理解就是:服务器用客户的公钥加密信息发给我,然后客户用私钥解密。

    3.数字签名:

    (1)密文C = Md mod N

    (2)解密M = Cmod N = (Md)e mod N = Md*e mod N  = M ;(原理同上)

    我的理解就是:我用自己的密钥加密签名,别人用我的公钥解密可以看到这是我的签名。注意,这个不具有隐私性,即任何人都可以解密此签名。

     

     

     

    PlainText: 10855225086173939930078735827643414599362568936

    5889113498649228757882549939690

    Encryption of plainText: 9643670328277461591386781304632351444421180914158605020517

    8025562797860283631742532185008096175459168035060137521984

    5956515264084827140511733851353574504602300562727743205958

    6030439105507942610235389151100878860062259683721684449352

    6995565035371405430097017917181968434081359786502175905113

    26578152573016111

    Decryption of cipherText: 1085522508617393993007873582764341459936256893658891134986

    49228757882549939690

    The algorithm is correct: True

     

    本实验可用老师MixCS软件生成素数pq,从而生成公钥和私钥,鉴于网上有相关介绍,本人还是坚持用python试一试。

     

    加载python强大的第三方库实现RSA算法,如:RSA模块,Pycrypto模块等,这些模块都能自动生成极大素数pq,进而生成公钥,私钥,因此与老师的所给的参考文件中的公钥,私钥不同,我还是希望一直用python做完实验的

     

     

     

     

    附录

    import random

    def fastExpMod(b, e, m):
        """
        e = e0*(2^0) + e1*(2^1) + e2*(2^2) + ... + en * (2^n)

        b^e = b^(e0*(2^0) + e1*(2^1) + e2*(2^2) + ... + en * (2^n))
            = b^(e0*(2^0)) * b^(e1*(2^1)) * b^(e2*(2^2)) * ... * b^(en*(2^n))

        b^e mod m = ((b^(e0*(2^0)) mod m) * (b^(e1*(2^1)) mod m) * (b^(e2*(2^2)) mod m) * ... * (b^(en*(2^n)) mod m) mod m
        """
       
    result = 1
        while e != 0:
            if (e&1) == 1:
                # ei = 1, then mul
                result = (result * b) % m
            e >>= 1
            # b, b^2, b^4, b^8, ... , b^(2^n)
            b = (b*b) % m
        return result

    def primeTest(n):
        q = n - 1
        k = 0
        #Find k, q, satisfied 2^k * q = n - 1
        while q % 2 == 0:
            k += 1;
            q /= 2
        a = random.randint(2, n-2);
        #If a^q mod n= 1, n maybe is a prime number
        if fastExpMod(a, q, n) == 1:
            return "inconclusive"
        #If there exists j satisfy a ^ ((2 ^ j) * q) mod n == n-1, n maybe is a prime number
        for j in range(0, k):
            if fastExpMod(a, (2**j)*q, n) == n - 1:
                return "inconclusive"
        #a is not a prime number
        return "composite"

    def findPrime(halfkeyLength):
        while True:
            #Select a random number n
            n = random.randint(0, 1<<halfkeyLength)
            if n % 2 != 0:
                found = True
                #If n satisfy primeTest 10 times, then n should be a prime number
                for i in range(0, 10):
                    if primeTest(n) == "composite":
                        found = False
                        break
                if found:
                    return n

    def extendedGCD(a, b):
        #a*xi + b*yi = ri
        if b == 0:
            return (1, 0, a)
        #a*x1 + b*y1 = a
        x1 = 1
        y1 = 0
        #a*x2 + b*y2 = b
        x2 = 0
        y2 = 1
        while b != 0:
            q = a / b
            #ri = r(i-2) % r(i-1)
            r = a % b
            a = b
            b = r
            #xi = x(i-2) - q*x(i-1)
            x = x1 - q*x2
            x1 = x2
            x2 = x
            #yi = y(i-2) - q*y(i-1)
            y = y1 - q*y2
            y1 = y2
            y2 = y
        return(x1, y1, a)

    def selectE(fn, halfkeyLength):
        while True:
            #e and fn are relatively prime
            e = random.randint(0, 1<<halfkeyLength)
            (x, y, r) = extendedGCD(e, fn)
            if r == 1:
                return e

    def computeD(fn, e):
        (x, y, r) = extendedGCD(fn, e)
        #y maybe < 0, so convert it
        if y < 0:
            return fn + y
        return y

    def keyGeneration(keyLength):
        #generate public key and private key
        p = findPrime(keyLength/2)
        q = findPrime(keyLength/2)
        n = p * q
        fn = (p-1) * (q-1)
        e = selectE(fn, keyLength/2)
        d = computeD(fn, e)
        return (n, e, d)

    def encryption(M, e, n):
        #RSA C = M^e mod n
        return fastExpMod(M, e, n)

    def decryption(C, d, n):
        #RSA M = C^d mod n
        return fastExpMod(C, d, n)


    #Unit Testing
    (n, e, d) = keyGeneration(1024)
    #AES keyLength = 256
    X = random.randint(0, 1<<256)
    C = encryption(X, e, n)
    M = decryption(C, d, n)
    print "PlainText:", X
    print "Encryption of plainText:", C
    print "Decryption of cipherText:", M
    print "The algorithm is correct:", X == M

  • 相关阅读:
    codevs1127
    codevs1041
    C#预处理指令
    C#基本语句与C++区别
    iOS.TextKit.01.凸版印刷效果
    iOS.常用设计模式.02.委托模式
    iOS.常用设计模式.01.单例模式
    iOS.iPad.03.UIModal
    iOS.iPad.02.UIPopoverViewController
    iOS.iPad.01.UISplitViewController
  • 原文地址:https://www.cnblogs.com/WhiteHatKevil/p/10133123.html
Copyright © 2020-2023  润新知