• Brute-force Algorithm HDU


    水题一道

    推一下就是

    f[n] = f[n - 1] + f[n - 2]

    发现n很大

    所以用矩阵快速幂就好了

    还有P很大  那就指数循环节

    一定要注意   这个条件 

    #include <iostream>
    #include <cstdio>
    #include <sstream>
    #include <cstring>
    #include <map>
    #include <cctype>
    #include <set>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <algorithm>
    #include <list>
    #include <cmath>
    #include <bitset>
    #define rap(i, a, n) for(int i=a; i<=n; i++)
    #define rep(i, a, n) for(int i=a; i<n; i++)
    #define lap(i, a, n) for(int i=n; i>=a; i--)
    #define lep(i, a, n) for(int i=n; i>a; i--)
    #define rd(a) scanf("%d", &a)
    #define rlld(a) scanf("%lld", &a)
    #define rc(a) scanf("%c", &a)
    #define rs(a) scanf("%s", a)
    #define rb(a) scanf("%lf", &a)
    #define rf(a) scanf("%f", &a)
    #define pd(a) printf("%d
    ", a)
    #define plld(a) printf("%lld
    ", a)
    #define pc(a) printf("%c
    ", a)
    #define ps(a) printf("%s
    ", a)
    #define MOD 2018
    #define LL long long
    #define ULL unsigned long long
    #define Pair pair<int, int>
    #define mem(a, b) memset(a, b, sizeof(a))
    #define _  ios_base::sync_with_stdio(0),cin.tie(0)
    //freopen("1.txt", "r", stdin);
    using namespace std;
    const int maxn = 1100000, INF = 0x7fffffff;
    
    int prime[maxn+10], phi[maxn+10];
    bool vis[maxn+10];
    int ans;
    LL P;
    void get_phi()
    {
        ans = 0;
        phi[1] = 1;
        for(int i=2; i<=maxn; i++)
        {
            if(!vis[i])
            {
                prime[++ans] = i;
                phi[i] = i - 1;
            }
            for(int j=1; j<=ans; j++)
            {
                if(i * prime[j] > maxn) break;
                vis[i * prime[j]] = 1;
                if(i % prime[j] == 0)
                {
    
                    phi[i * prime[j]] = phi[i] * prime[j]; break;
                }
                else
                    phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    }
    
    LL q_pow(LL a, LL b)
    {
        LL res = 1;
        while(b)
        {
            if(b & 1) res = res * a % P;
            a = a * a % P;
            b >>= 1;
        }
        return res;
    }
    int tot;
    struct Matrix
    {
        LL v[110][110];
        Matrix()
        {
            memset(v, 0, sizeof(v));
        }
        Matrix operator *(const Matrix B)    // 重载的速度比写独立的函数慢点。
        {
            int i, j, k;
            Matrix C;
            for(i = 0; i <= tot; i ++)
                for(j = 0; j <= tot; j ++)
                    for(k = 0; k <= tot; k ++)
                    {
                        C.v[i][j] = (C.v[i][j] + v[i][k] * B.v[k][j]) % phi[P];
    
                    }
            return C;
        }
    };
    
    Matrix mtPow(Matrix A, LL k)           // 用位运算代替递归求 A^k。
    {
        int i;
        Matrix B;
        for(i = 0; i <= tot; i ++)
        {
            B.v[i][i] = 1;
        }
        while(k)
        {
            if(k & 1) B = B * A;
            A = A * A;
            k >>= 1;
        }
        return B;
    }
    
    
    int main()
    {
        get_phi();
        int kase = 0;
    
        int T;
        rd(T);
        while(T--)
        {
            tot = 1;
            LL a, b, n;
            cin >> a >> b >> P >> n;
            if(n == 1)
                printf("Case #%d: %lld
    ", ++kase, a % P);
            else if(n == 2)
                printf("Case #%d: %lld
    ", ++kase, b % P);
            else if(n == 3)
                printf("Case #%d: %lld
    ", ++kase, a * b % P);
            else
            {
                Matrix A, B;
                A.v[0][0] = A.v[0][1] = A.v[1][0] = 1;
                A.v[1][1] = 0;
                B = mtPow(A, n - 3);
                LL d1 = B.v[0][0] + B.v[0][1], d2 = B.v[1][0] + B.v[1][1];
                if(d2 >= phi[P]) d2 = d2 % phi[P] + phi[P];
                if(d1 >= phi[P]) d1 = d1 % phi[P] + phi[P];
                a = q_pow(a, d2) % P;
                b = q_pow(b, d1) % P;
                printf("Case #%d: ", ++kase);
                cout << a * b % P << endl;
            }
    
        }
    
        return 0;
    }
  • 相关阅读:
    jmeter参数化关联
    电商
    mysql联查
    购物车
    冒泡排序、二分查找、选择排序、斐波那契
    python数据转换/9*9表/for循环
    python三角形
    mysql语句
    Selenium 8
    Selenium 7
  • 原文地址:https://www.cnblogs.com/WTSRUVF/p/10806701.html
Copyright © 2020-2023  润新知