• 01背包


    转载:http://blog.csdn.net/mu399/article/details/7722810

    01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。

    01背包的状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ),  f[i-1,j] }

    f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。
    Pi表示第i件物品的价值。
    决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?
     

    题目描述:

    有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?

    name weight value 1 2 3 4 5 6 7 8 9 10
    a 2 6 0 6 6 9 9 12 12 15 15 15
    b 2 3 0 3 3 6 6 9 9 9 10 11
    c 6 5 0 0 0 6 6 6 6 6 10 11
    d 5 4 0 0 0 6 6 6 6 6 10 10
    e 4 6 0 0 0 6 6 6 6 6 6 6

    只要你能通过找规律手工填写出上面这张表就算理解了01背包的动态规划算法。

    首先要明确这张表是至底向上,从左到右生成的。

    为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。

    对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

    同理,c2=0,b2=3,a2=6。

    对于承重为8的背包,a8=15,是怎么得出的呢?

    根据01背包的状态转换方程,需要考察两个值,

    一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;

    在这里,

     f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

    f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

    f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6

    由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包

  • 相关阅读:
    ES6的let命令
    html5的新标签
    text()和html()的区别,以及val()
    jquery链接多个jquery方法
    jquery实现动画
    jquery的滑动
    jquery实现淡入淡出
    jquery的hide()和show()
    jquery里面的名称冲突解决方法
    写给W小姐的一封信
  • 原文地址:https://www.cnblogs.com/WDKER/p/5543678.html
Copyright © 2020-2023  润新知