• SPOJ1812


    PortalPortal to 洛谷

    Description

    给出(n(nleq10))个仅包含小写字母的字符串(s_1..s_n(|s_i|leq10^5)),求这些字符串的最长公共子串长度。

    Solution

    对第一个串建立SAM,然后依次跑剩下的串。
    记录(maxL[i])表示对于目前做过的所有串,状态(i)最长能匹配的长度。跑一个串(x)时,记录(tmp[i])表示对于串(x),状态(i)最长能匹配的长度,跑完之后将(maxL)(tmp)(min)。答案就是(maxL)中的最大值。
    如何在SAM上跑一个串呢?如果当前处于状态(p),下一个字符是(x),那么若有(ch[p][x])则转移,否则在(parent)树上回溯(p)直至存在(ch[p][x])并转移。如果直到根也不存在(ch[p][x]),那么令(p=rt),从头开始匹配。在(parent)上回溯就相当于不断减小匹配长度(len)
    不过只是跑一遍可并不能求出所有的(tmp),有的状态因为不够优而被跳过了。所以跑完之后,我们应当在(parent)树上从底向上更新出所有状态的(tmp),即tmp[fa[p]]=max(tmp[fa[p]],min(len[fa[p],tmp[p]))。但由于(len[fa[p]] < tmp[p] leq len[p], tmp[fa[p]]leq len[fa[p]]),所以后面的一堆在(p)被匹配到(存在(tmp[p]))的情况下必然等于(len[fa[p]])

    时间复杂度(O(sum|s|))

    Code

    //Longest Common Substring
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    int const N=2e5+10;
    int const INF=0x7FFFFFFF;
    char s0[N>>1],s[N>>1];
    int ndCnt,rt,last;
    int fa[N],ch[N][26],len[N];
    void ins(int x)
    {
        int p=last,np=++ndCnt;
        last=np,len[np]=len[p]+1;
        for(p;p&&!ch[p][x];p=fa[p]) ch[p][x]=np;
        if(!p) {fa[np]=rt; return;}
        int q=ch[p][x];
        if(len[q]==len[p]+1) {fa[np]=q; return;}
        int nq=++ndCnt; len[nq]=len[p]+1;
        for(int i=0;i<26;i++) ch[nq][i]=ch[q][i];
        fa[nq]=fa[q]; fa[q]=fa[np]=nq;
        for(p;p&&ch[p][x]==q;p=fa[p]) ch[p][x]=nq;
    }
    int cnt[N],ord[N];
    void buildSAM(char s[])
    {
        last=rt=++ndCnt;
        for(int i=1;s[i];i++) ins(s[i]-'a');
        memset(cnt,0,sizeof cnt);
        for(int i=1;i<=ndCnt;i++) cnt[len[i]]++;
        for(int i=ndCnt-1;i>=0;i--) cnt[i]+=cnt[i+1];
        for(int i=ndCnt;i>=1;i--) ord[cnt[len[i]]--]=i;
    }
    int maxL[N],tmp[N];
    void query(char s[])
    {
        memset(tmp,0,sizeof tmp);
        for(int p=rt,L=0,i=1;s[i];i++)
        {
            int x=s[i]-'a';
            if(ch[p][x]) L++,p=ch[p][x];
            else
            {
                while(p&&!ch[p][x]) p=fa[p];
                if(!p) L=0,p=rt;
                else L=len[p]+1,p=ch[p][x];
            }
            tmp[p]=max(tmp[p],L);
        }
        for(int i=1;i<=ndCnt;i++)
        {
            int p=ord[i]; maxL[p]=min(maxL[p],tmp[p]);
            if(fa[p]&&tmp[p]) tmp[fa[p]]=len[fa[p]];
            //等价于tmp[fa[p]]=max(tmp[fa[p]],min(len[fa[p],tmp[p]))
        }
    }
    int main()
    {
        scanf("%s",s0+1); buildSAM(s0);
        for(int p=1;p<=ndCnt;p++) maxL[p]=len[p];
        while(scanf("%s",s+1)!=EOF) query(s);
        int ans=0;
        for(int p=1;p<=ndCnt;p++) ans=max(ans,maxL[p]);
        printf("%d
    ",ans);
        return 0;
    }
    

    P.S.

    昨天就A了今天才发题解真是对不起...

  • 相关阅读:
    zabbix邮箱告警配置
    kali linux 开启配置ssh服务
    自主访问控制和强制访问控制
    Eddy's picture
    Connect the Cities--hdoj
    Dark roads--hdoj
    Ice_cream’s world III
    国王的烦恼---nyoj
    Tree
    Jungle Roads --hdoj
  • 原文地址:https://www.cnblogs.com/VisJiao/p/SPOJ1812.html
Copyright © 2020-2023  润新知