Problem:
Given n points in the plane that are all pairwise distinct, a "boomerang" is a tuple of points (i, j, k)
such that the distance between i
and j
equals the distance between i
and k
(the order of the tuple matters).
Find the number of boomerangs. You may assume that n will be at most 500 and coordinates of points are all in the range [-10000, 10000](inclusive).
Example:
Input: [[0,0],[1,0],[2,0]] Output: 2 Explanation: The two boomerangs are [[1,0],[0,0],[2,0]] and [[1,0],[2,0],[0,0]]
Summary:
定义一种类似“回形标”的三元组结构,即在三元组(i, j, k)中i和j之间的距离与i和k之间的距离相等。找到一组坐标数据中,可构成几组这样的“回形标”结构。
Analysis:
若在一组点集{a, b, c, d, ...}中,以点a为一个端点,与dis(a, b)相等的点存在n个(包含点b),那么在这n个点中任意选出两个点与点a构成三元组,则有n(n - 1) / 2种情况。但因为三元组[a, b, c]与三元组[a, c, b]并不相同,所以实际为排列问题,答案为n(n - 1)。
代码中正是以此为基本思想,找到以每一个点为端点时,与其余点共组成多少种不同的距离,此处用map记录,key为距离长度,value为距离出现次数。再根据前面的公式计算即可。
1 class Solution { 2 public: 3 int numberOfBoomerangs(vector<pair<int, int>>& points) { 4 int len = points.size(), res = 0; 5 unordered_map<int, int> m; 6 7 for (int i = 0; i < len; i++) { 8 for (int j = 0; j < len; j++) { 9 int x = points[i].first - points[j].first; 10 int y = points[i].second - points[j].second; 11 m[x * x + y * y]++; 12 } 13 14 unordered_map<int, int> :: iterator it; 15 for (it = m.begin(); it != m.end(); it++) { 16 int tmp = it->second; 17 res += tmp * (tmp - 1); 18 } 19 m.clear(); 20 } 21 22 return res; 23 } 24 };