• 用python实现【五猴分桃】问题


    转载链接:https://blog.csdn.net/cy309173854/article/details/78296839

    据说“五猴分桃”问题最先是由大物理学家狄拉克提出来的,这一貌似简单的问题曾困扰住了他,经过努力,他只是获得了相当繁琐的求解方法。为了获得简便的方法,他把问题提供给当时的一些数学家,有意思的是竟然也没有得到满意的结果。在后来者的不断努力下,比较简捷的方法才逐步涌现。 
    李政道和杨振宁曾荣获诺贝尔物理学奖,正是由李政道提议成立了中科大少年班,他在中科大少年班的开班仪式上对“五猴分桃”问题进行适当演绎,提供给了少年班同学。

    【五猴分桃】

    话说花果山水帘洞有5只聪明的猴子,有一天它们得到了一堆桃子,他们发现那堆桃子不能被均匀分5份,于是猴子们决定先去睡觉,明天再讨论如何分配。夜深人静的时候,猴子A偷偷起来,吃掉了一个桃子后,它发现余下的桃子正好可以平均分成5份,于是它拿走了一份;接着猴子B也起来先偷吃了一个,结果它也发现余下的桃子恰好可以被平均分成5份,于是它也拿走了一份;后面的猴子C、D、E一次如法炮制,先偷吃一个,然后将余下的桃子平均分成5份并拿走了自己的一份,问:这一堆桃子至少有几个?

    【解决思路】

    设桃子总数为N,先借4个,总数则为N+4个,分成5份,每份相同。

    经过第一步后,剩下4(N+4)/5

    经过第二步后,剩下4^2(N+4)/5^2

    经过第三步后,剩下4^3(N+4)/5^3

    经过第四步后,剩下4^4(N+4)/5^4

    经过第五步后,剩下4^5(N+4)/5^5

    显然,4^5(N+4)/5^5 为整数,因为4^5和5^5互质,则:(N+4)肯定能被5^5整除。

    所以,N=5^5×K-4,(K=1,2,3,......) 当K=1时,N为最小值,结果为5^5-4=3121

    实际上只需要往桃堆添四个桃,就会发现,实际上每次猴子都是拿走桃堆的五分之一(包括它吃掉的),然后就是一个公比为5/4的等比数列。

    【Python源码】

     1 #!/usr/bin/python
     2 #coding=utf-8
     3 # __author__ = 'cy'
     4 #输入猴子数量
     5 monkey = input("Input monkey num:")
     6 #定义桃子总数函数
     7 def show(n):
     8     #循环次数
     9     for i in xrange(1, monkey+1):
    10         #下一只猴子应该带走的桃子数
    11         t = (n - 1) / monkey
    12         #格式化输出
    13         print u'%d. 桃子有%d个, 第%i只猴吃1个, 拿走%s个。' % (i, n, i, t)
    14         #前一只猴子带走一份桃子后剩余的桃子总数
    15         n = (monkey-1) * t
    16 #定义功能函数
    17 def fun():
    18     #从1开始
    19     k = 1
    20     while True:
    21         t = k
    22         #循环次数
    23         for i in xrange(monkey-1):
    24             #当前猴子应拿走桃子数为tc,吃拿之前总量应为 monkey * tc + 1,前一个猴子拿走桃子数为tp,则有 (monkey-1) * tp = monkey * tc + 1
    25             t = monkey * t + 1
    26             #在for循环中含有break时则直接终止循环,不执行else
    27             if t % (monkey-1): break
    28             t /= (monkey-1)
    29         #当迭代的对象迭代完并为空时,位于else的子句将执行,即找到符合条件最小整数
    30         else:
    31              print u'如果猴子%d只:'% monkey
    32              print u'桃子总数要%d个:'% (monkey * t + 1)
    33              show(monkey * t + 1)
    34              break
    35         k += 1
    36 fun()
  • 相关阅读:
    一些易忘记的常识HTML,不定期添加
    base64 encoder/decoder for objectivec编码及解码(转)
    用XCode 开发基于网络库ACE的应用
    迅雷/旋风地址转换原理分析(转)
    主题:非常常用的Mac快捷键
    没事干测试ObjC数据类型
    These are the support and errata files for titles formerly published by Wrox Press Limited.
    iOS 开发者应该知道的 ARM 结构(转自apple4us)
    [创建型模式] Factory
    [创建型模式] Builder
  • 原文地址:https://www.cnblogs.com/VanJing/p/9383278.html
Copyright © 2020-2023  润新知