• poj 2049 Let it Bead(polya模板)


     

    Description

    "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced. 
    
    A bracelet is a ring-like sequence of s beads each of which can have one of c distinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

    Input

    Every line of the input file defines a test case and contains two integers: the number of available colors c followed by the length of the bracelets s. Input is terminated by c=s=0. Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs<=32, i.e. their product does not exceed 32.

    Output

    For each test case output on a single line the number of unique bracelets. The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

    Sample Input

    1 1
    2 1
    2 2
    5 1
    2 5
    2 6
    6 2
    0 0

    Sample Output

    1
    2
    3
    5
    8
    13
    21

    Source

     
    非暴力,其实暴力和非暴力时间差不多
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<map>
     5 #include<set>
     6 #include<vector>
     7 using namespace std;
     8 #define ll long long
     9 ll pow_mod(ll a,ll i){
    10     if(i==0)
    11         return 1;
    12     ll t=pow_mod(a,i/2);
    13     ll ans=t*t;
    14     if(i&1)
    15         ans=ans*a;
    16     return ans;
    17 }
    18 
    19 vector<ll> divisor(ll n){
    20     vector<ll> res;
    21     for(ll i=1;i*i<=n;i++){
    22         if(n%i==0){
    23             res.push_back(i);
    24             if(i*i!=n){
    25                 res.push_back(n/i);
    26             }
    27         }
    28     }
    29     return res;
    30 }
    31 
    32 ll eular(ll n){
    33     ll res=1;
    34     for(ll i=2;i*i<=n;i++){
    35         if(n%i==0){
    36             n/=i,res*=i-1;
    37             while(n%i==0){
    38                 n/=i;
    39                 res*=i;
    40             }
    41         }
    42     }
    43     if(n>1) res*=n-1;
    44     return res;
    45 }
    46 
    47 ll polya(ll m,ll n){
    48     vector<ll> divs = divisor(n);
    49     ll res=0;
    50     for(ll i=0;i<divs.size();i++){
    51         ll euler=eular(divs[i]);
    52         res+=euler*pow_mod(m,n/divs[i]);
    53     }
    54     res/=n;
    55     return res;
    56 }
    57 
    58 int main()
    59 {
    60     ll n,m;
    61     while(scanf("%I64d%I64d",&m,&n)==2 && n+m!=0){
    62         ll ans=polya(m,n)*n;//旋转情况
    63         if(n&1){//奇数
    64             ans+=n*pow_mod(m,n/2+1);//翻转情况
    65         }
    66         else{//偶数
    67             ans += (pow_mod(m, n / 2 + 1) + pow_mod(m, n / 2)) * (n / 2);//翻转情况
    68         }
    69         ans/=2*n;
    70         printf("%I64d
    ",ans);
    71     }
    72     return 0;
    73 }
    View Code

    暴力枚举k

     1 #include <iostream>
     2 using namespace std;
     3  
     4 #define LL long long
     5  
     6 int gcd(int a, int b)
     7 {
     8     return b == 0 ? a : gcd(b, a % b);
     9 }
    10  
    11 LL power(LL p, LL n)
    12 {
    13     LL sum = 1;
    14     while (n)
    15     {
    16         if (n & 1)
    17             sum *= p;
    18         p *= p;
    19         n /= 2;
    20  
    21     }
    22     return sum;
    23 }
    24  
    25 ///////////////////////////SubMain//////////////////////////////////
    26 int main()
    27 {
    28 
    29     LL n; LL m;
    30     while (~scanf("%I64d%I64d", &m,&n) && n+m!=0)
    31     {
    32         LL count = 0;
    33         for (int i = 1; i <= n; ++i)
    34             count += power(m, gcd(i, n));
    35         if (n & 1)
    36             count += n * power(m, n / 2 + 1);
    37         else
    38             count += n / 2 * (power(m, n / 2 + 1) + power(m, n / 2));
    39         count /= n * 2;
    40         printf("%lld
    ", count);
    41     }
    42 
    43     return 0;
    44 }
    View Code
  • 相关阅读:
    jdk动态代理
    HTML+JavaScript实现在一个下拉框中多选,然后提交到另外一个下拉框中的效果
    Top中是如何取到Linux内核中的Hertz的?以及CPU使用率到底是怎么算出来的?
    C语言中的负数是如何表示的?
    Learning Python第二版笔记-Chapter 3 How to run your program
    Learning Python第二版笔记-Chapter 4 Numbers
    Learning Python第二版笔记-Chapter 1 & 2
    Firefox中的document.all的替代方案From EasyCluster support Firefox
    Linux下共享库中的全局变量,静态变量是否只有一份?
    C和C++编程中static关键字的含义-修饰函数和变量
  • 原文地址:https://www.cnblogs.com/UniqueColor/p/4776588.html
Copyright © 2020-2023  润新知