• 自动内存管理机制


    Java内存区域与内存溢出异常

    Java和C++之间有一堵由内存动态分配和垃圾手机技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。

    概述

    对于从事C和C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的皇帝,又是从事最基础工作的劳动人民——既有用每一个对象的“所有权”,又担负着每个对象生命开始到终结的维护责任。

    对Java程序员来说,在虚拟机的自动内存管理机制的帮助下,不再需要为每一个new操作去写配对的delete/free代码,而且不容易出现内存泄漏和内存溢出问题,看起来由虚拟机管理内存一切都很美好。不过,也正是因为Java程序员把内存控制的权利交给了Java虚拟机,一旦出现内存泄漏和溢出方面的问题,如果不了解迅即是怎样使用内存的,那排查错误将会称为一项异常艰难的工作。

    运行时数据区域

    Java虚拟机在执行Java程序的过程中会把它所管理的内存划分成为若干个不同的数据区域。根据《Java虚拟机规范(第2版)》的规定,Java虚拟机所管理的内存将会包括以下几个运行时数据区域。

    程序计数器

    程序计数器(Program Counter Register)是一块较小的内存空间,它的作用可以看做是当前线程所执行的字节码的行号指示器。在虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选区下一条需要执行的字节码指令,分支、循环、跳转、异常处理、线程恢复等基础功能都需要依赖这个计数器来完成。

    由于Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间的计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

    如果线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是Natvie方法,这个计数器则为空(Undefined)。此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。

    Java虚拟机栈

    与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法被执行的时候都会同时创建一个栈帧(Stack Frame)(栈帧是方法运行期的基础数据结构)用于存储局部变量表、操作栈、动态链接、方法出口等信息。每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

    局部变量表存放了编译期可知的各种基本数据类型(boolean、byte、char、short、int、float、long、double)、对象引用(reference类型,它不等同于对象本身,根据不同的虚拟机实现,它可能是一个指向对象起始地址的引用指针,也可能指向一个代表对象的句柄或者其他的与此对象相关的位置)和returnAddress类型(指向了一条字节码指令的地址)。其中64位长度的long和double类型的数据会占用2个局部变量空间(Slot),其余的数据类型只占用1个。

    局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

    在Java虚拟机规范中,对这个区域规定了两种异常状况:

    1. 如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;
    2. 如果虚拟机栈可以动态扩展(当前大部分的Java虚拟机都可动态扩展,只不过Java虚拟机规范中允许固定长度的虚拟机栈),当扩展时无法申请到足够的内存时会抛出OutOfMemoryError异常。

    本地方法栈

    本地方法栈(Natvive Method Stacks)与虚拟机栈所发挥的作用是非常相似的,其区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。

    Java堆

    对于大多数应用来说,Java堆(Java Heap)是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有对象实例都在这里分配内存。这一点在Java虚拟机规范中的描述是:所有的对象实例以及数组都要在堆上分配,但是随着JIT编译器的发展与逃逸分析技术的逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化发生,所有的对象都分配在堆上也渐渐变得不是那么“绝对”了。

    Java堆是垃圾收集器管理的主要区域,因此很多时候也被称为“GC堆”(Garbage Collected Heap)。如果从内存回收的角度看,由于现在收集器基本都是采用的分代收集算法,所以Java堆中还可以细分为:新生代和老年代;如果从内存分配的角度看,线程共享的Java堆中可能划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB)。不过,无论如何划分,都与存放内容无关,无论那个区域,存储的都仍然是对象实例,进一步划分的目的是为了更好地回收内存,或者更快的分配内存。

    根据Java虚拟机规范的规定,Java堆可以处于物理上不连续地内存空间中,只要逻辑上是连续地的即可,就像我们的磁盘空间一样。

    方法区

    方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-Heap(非堆),目的应该是与Java堆区分开来。

    Java虚拟机规范对这个区域的限制非常宽松,除了和Java堆一样不需要连续的内存和可以选择固定大小或者可扩展外,还可以选择不实现垃圾收集。这个区域的内存回收目标主要是针对常量池的回收和对类型的卸载,一般来说这个区域的回收“成绩”比较难以令人满意,尤其是类型的卸载,条件相当苛刻,但是这部分区域的回收确实是有必要的。

    根据Java虚拟机规范的规定,当方法区无法满足内存分配需求时,将抛出OutOfMemoryError异常。

    运行时常量池

    运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

    一般来说,除了保存Class文件中描述的符号引用外,还会把翻译出来的直接引用也存储在运行时常量池中。

    运行时常量池相对于Class文件常量池的另外一个重要特征时具备动态性,Java语言并不要求常量一定只能在编译器产生,也就是并非预置入Class文件中常量池的内容才能进入方法区运行时常量池,运行期间也可能将新的常量放入池中,这种特性被开发人员利用的比较多的便是String类的intern()方法。

    当常量池无法在申请到内存时会抛出OutOfMemoryError异常。

    直接内存

    直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现。

    在JDK1.4中新加入了NIO(New Input/Oupt)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。

    显然,本地直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,则肯定还是会受到本机总内存(包括RAM及SWAP区或者分页文件)的大小及处理器寻址空间的限制。服务器管理员配置虚拟机参数时,一般会根据实际内存设置-Xmx等参数信息,但经常会忽略掉直接内存,使得各个内存区域的总和大于物理内存限制(包括物理上的和操作系统级的限制),从而导致动态扩展时出现OutOfMemoryError异常。

    对象访问

    在Java语言中,对象访问是如何进行的?

    对象访问在Java语言中无处不在,是最普遍的程序行为,但即使是最简单的访问,也会却涉及Java栈、Java堆、方法区这三个最重要内存区域之间的关联关系,如下面的这句代码:

    Object obj = new Object();l

    假设这句代码出现在方法体中,那”Object obj“这部分的语义将会反映到Java栈的本地变量表中,作为一个reference类型数据出现。而”new Object()“这部分的语义将会反映到Java堆中,形成一块存储了Object类型所有实例数据值(Instance Date,对象中各个实例字段的数据)的结构化内存,根据具体类型以及虚拟机实现的对象内存布局(Object Memory Layout)的不同,这块内存的长度是不固定的。另外,在Java堆中还必须包含能够找到此对象类型数据(如对象类型、父类、实现的接口、方法等)的地址信息,这些类型数据则存储在方法区中。

    由于reference类型在Java虚拟机规范里面只规定了一个指向对象的引用,并没有定义这个引用应该通过那种方式去定位,以及访问到Java堆中的对象的具体位置,因此不同虚拟机实现的对象访问方式会有所不同,主流的访问方式有两种:使用句柄和直接指针。

    • 如果使用句柄访问方式,Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据和类型数据各自的具体地址信息,如图所示

    • 如果使用直接指针访问方式,Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,reference中直接存储的就是对象地址,如图所示

    使用句柄访问方式的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

    使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多也是一些非常可观的执行成本。

  • 相关阅读:
    数据结构(2)链表的实现
    vc 调试方法-2
    c语法拾遗-关于指针变量的声明
    收集的一些无聊的网站
    《将博客搬至CSDN》的文章
    黑马程序员-面向对象
    黑马程序员-类加载机制和反射。
    黑马程序员- 正则表达式
    黑马程序员-网络编程
    黑马程序员-File类+递归的简单应用
  • 原文地址:https://www.cnblogs.com/Tu9oh0st/p/10147108.html
Copyright © 2020-2023  润新知