• [CQOI2015]选数


    II.[CQOI2015]选数

    我们要求这个东西:

    \(\sum\limits_{a_1=L}^R\sum\limits_{a_2=L}^R\dots\sum\limits_{a_n=L}^R[\gcd\limits_{i=1}^n(a_i)=k]\)

    老套路,除一下,得到

    \(\sum\limits_{a_1=\left\lfloor\frac{L-1}{k}\right\rfloor}^{\left\lfloor\frac{R}{k}\right\rfloor}\sum\limits_{a_2=\left\lfloor\frac{L-1}{k}\right\rfloor}^{\left\lfloor\frac{R}{k}\right\rfloor}\dots\sum\limits_{a_n=\left\lfloor\frac{L-1}{k}\right\rfloor}^{\left\lfloor\frac{R}{k}\right\rfloor}[\gcd\limits_{i=1}^n(a_i)=1]\)

    \(\mu\)一下,得到

    \(\sum\limits_{a_1=\left\lfloor\frac{L-1}{k}\right\rfloor}^{\left\lfloor\frac{R}{k}\right\rfloor}\sum\limits_{a_2=\left\lfloor\frac{L-1}{k}\right\rfloor}^{\left\lfloor\frac{R}{k}\right\rfloor}\dots\sum\limits_{a_n=\left\lfloor\frac{L-1}{k}\right\rfloor}^{\left\lfloor\frac{R}{k}\right\rfloor}\sum\limits_{x|a_1,x|a_2,\dots,x|a_n}\mu(x)\)

    \(x\)拖出去,得到

    \(\sum\limits_{x=1}^{\left\lfloor\frac{R}{k}\right\rfloor}\mu(x)(\left\lfloor\dfrac{L-1}{k}\right\rfloor-\left\lfloor\dfrac{R}{k}\right\rfloor)^n\)

    后面的东西整除分块掉,前面的东西杜教筛掉。

    然后就可以了。

    复杂度\(O(\text{能过})\)

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    const int mod=1e9+7;
    const int N=5000000;
    int n,k,L,R,mu[N+10],pri[N+10],ans;
    void getmu(){
    	mu[1]=1;
    	for(int i=2;i<=N;i++){
    		if(!pri[i])pri[++pri[0]]=i,mu[i]=-1;
    		for(int j=1;j<=pri[0]&&i*pri[j]<=N;j++){
    			pri[i*pri[j]]=true;
    			if(!(i%pri[j]))break;
    			mu[i*pri[j]]=-mu[i];
    		}
    	}
    //	for(int i=1;i<=10;i++)printf("%d\n",mu[i]);
    	for(int i=1;i<=N;i++)mu[i]=(0ll+mu[i]+mu[i-1]+mod)%mod;
    //	for(int i=1;i<=10;i++)printf("%d\n",mu[i]);
    }
    unordered_map<int,int>mp;
    int djs(int x){
    	if(x<=N)return mu[x];
    	if(mp[x])return mp[x];
    	int res=1;
    	for(int l=2,r;l<=x;l=r+1)r=x/(x/l),res=(0ll+res-(1ll*(r-l+1)*djs(x/l)%mod)+mod)%mod;
    	return mp[x]=res;
    }
    int ksm(int x,int y){
    	int res=1;
    	for(;y;x=(1ll*x*x)%mod,y>>=1)if(y&1)res=(1ll*res*x)%mod;
    	return res;
    }
    int main(){
    	scanf("%d%d%d%d",&n,&k,&L,&R),L--,L/=k,R/=k,getmu();
    //	printf("%d %d\n",L,R);
    	for(int l=1,r;l<=R;l=r+1){
    		if(!(L/l))r=R/(R/l);
    		else r=min(L/(L/l),R/(R/l));
    		ans=(ans+(1ll*(djs(r)-djs(l-1)+mod)%mod*ksm((R/l)-(L/l),n)%mod))%mod;
    	}
    	printf("%d\n",ans);
    	return 0;
    }
    

  • 相关阅读:
    流式布局思想
    盒子的显隐
    高级布局 浮动 清浮动
    display总结 overflow知识
    边界圆角 盒模型布局 图片背景 精灵图
    io模型
    协程
    GIL 进程池与线程池
    守护进程 互斥锁 进程间通讯
    子进程
  • 原文地址:https://www.cnblogs.com/Troverld/p/14619630.html
Copyright © 2020-2023  润新知