• Codeforces 451E Devu and Flowers


    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

    Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7). 

    Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

    Input

    The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

    The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

    Output

    Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

    类似XDOJ卡尔的技能II,首先所有的情况是C(n+m-1,n)然后减去花坛中超过f[i]的,加上两个超过,减去三个的。。。

    #include <iostream>
    using namespace std;
    typedef long long LL;
    #define MOD 1000000007
    
    LL f[35],n,s;
    inline LL read()
    {
        LL x=0,f=1;
        char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    
    LL Fast_Mod(LL a,LL b,LL p)
    {
        LL res = 1,base = a;
      while (b){
        if (b & 1) res = (res * base) % p;
        base = base * base % p;
        b >>= 1;
      }
      return res;
    }
    
    LL C(LL n,LL m,LL p){
      if (n < m) return 0;
      if (m > n - m) m = n - m;
      LL s1 = 1,s2 = 1;
      for (LL i=0;i<m;i++){
        s1 = s1 * (n - i) % p;
        s2 = s2 * (i + 1) % p;
      }
    
      return s1 * Fast_Mod(s2,p-2,p) % p;
    }
    
    LL Lucas(LL n,LL m,LL p){
      if (m == 0) return 1;
      return C(n % p,m % p,p) * Lucas(n / p,m / p,p);
    }
    
    
    LL solve(){
      LL ans = 0;
    
      for (int i=0;i<(1<<n);i++){
        // cout << i << ans << endl;
        LL sign = 1,sum = s;
        for (int j=0;j<n;j++){
          if (i & (1 << j)){
            sum -= (f[j] + 1);
            sign *= -1;
          }
        }
        if (sum < 0){
          continue;
        }
        ans += sign * Lucas(sum + n - 1, n - 1, MOD);
        ans %= MOD;
      }
      return (ans + MOD) % MOD;
    }
    
    int main(){
        // freopen("test.in","r",stdin);
        n=read();s=read();
        for(int i=0;i<n;i++)
            f[i]=read();
        printf("%lld
    ", solve());
    }
    View Code
  • 相关阅读:
    document.body.scrollTop or document.documentElement.scrollTop
    获取到body的offsetTop和offsetLeft值
    Web安全学习笔记之一
    angular.js学习笔记之一
    backbone学习笔记一
    IE中的CSS3不完全兼容方案
    c#调用c++库函数
    c++动态库封装及调用(3、windows下动态库调用)
    c++动态库封装及调用(2、windows下动态库创建)
    c++动态库封装及调用(1、动态库介绍)
  • 原文地址:https://www.cnblogs.com/ToTOrz/p/7411172.html
Copyright © 2020-2023  润新知