• CF E. Porcelain (双向dp)


    E. Porcelain
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    During her tantrums the princess usually smashes some collectable porcelain. Every furious shriek is accompanied with one item smashed.

    The collection of porcelain is arranged neatly on n shelves. Within each shelf the items are placed in one row, so that one can access only the outermost items — the leftmost or the rightmost item, not the ones in the middle of the shelf. Once an item is taken, the next item on that side of the shelf can be accessed (see example). Once an item is taken, it can't be returned to the shelves.

    You are given the values of all items. Your task is to find the maximal damage the princess' tantrum of m shrieks can inflict on the collection of porcelain.

    Input

    The first line of input data contains two integers n (1 ≤ n ≤ 100) and m (1 ≤ m ≤ 10000). The next n lines contain the values of the items on the shelves: the first number gives the number of items on this shelf (an integer between 1 and 100, inclusive), followed by the values of the items (integers between 1 and 100, inclusive), in the order in which they appear on the shelf (the first number corresponds to the leftmost item, the last one — to the rightmost one). The total number of items is guaranteed to be at least m.

    Output

    Output the maximal total value of a tantrum of m shrieks.

    Examples
    input
    Copy
    2 3
    3 3 7 2
    3 4 1 5
    
    output
    Copy
    15
    
    input
    Copy
    1 3
    4 4 3 1 2
    
    output
    Copy
    9
    
    Note

    In the first case there are two shelves, each with three items. To maximize the total value of the items chosen, one can take two items from the left side of the first shelf and one item from the right side of the second shelf.

    In the second case there is only one shelf, so all three items are taken from it — two from the left side and one from the right side.

    题意:给n层数字,总共要取m次,每次只能取一层的两端,求最大价值

    思路:预处理+01背包

             F【i】【j】表示第i层取了j次的最大代价

             p【i】表示取了i次的最大价值。

    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    using namespace std;
    int n,M,m[10100],f[10100][110],a[10100],ans=0;
    int sum[10100],p1[20100],p2[20100],p[20010];
    int read()
    {
    	char c=getchar();int ans=0;
    	while(c>'9'||c<'0') c=getchar();
    	while(c<='9'&&c>='0') ans=ans*10+c-'0',c=getchar();
    	return ans;
    }
    int main()
    {       
    	n=read(); M=read();
    	for(int k=1;k<=n;k++)
    	   {
    	   	m[k]=read();
    	   	for(int i=1;i<=m[k];i++) a[i]=read(),a[i]+=a[i-1];
    	   	f[k][0]=0;
    	   	for(int i=0;i<=m[k];i++)
    	   	   {
    	   	   	for(int j=0;j+i<=m[k];j++)
    	   	   	   f[k][m[k]-i]=max(a[m[k]]-(a[j+i]-a[j]),f[k][m[k]-i]);
    		   }
    	   }
    for(int i=1;i<=n;i++)
      for(int j=M;j>=1;j--)
         for(int k=1;k<=min(j,m[i]);k++)
    	    p[j]=max(p[j-k]+f[i][k],p[j]);
    printf("%d
    ",p[M]); 
    }
    按道理这道题的复杂度是O(n*n*m),本应该跑不出来的,但是常数比较小,时间是109ms
    双向dp
    根据双向搜索的思想,减少中间不必要的状态,理论上时间减少1/4,实际上46ms

    #include<iostream>
    #include<cmath>
    #include<cstring>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    using namespace std;
    int n,M,m[10100],f[10100][110],a[10100],ans=0;
    int sum[10100],p1[20100],p2[20100];
    int read()
    {       
    	char c=getchar();int ans=0;
    	while(c>'9'||c<'0') c=getchar();
    	while(c<='9'&&c>='0') ans=ans*10+c-'0',c=getchar();
    	return ans;
    }
    int main()
    { 
        memset(p1,0,sizeof(p1));
        memset(p2,0,sizeof(p2));
    	n=read(); M=read();
    	for(int k=1;k<=n;k++)
    	   {
    	   	m[k]=read(); 
    	   	for(int i=1;i<=m[k];i++) a[i]=read(),a[i]+=a[i-1];
    	   	f[k][0]=0;
    	   	for(int i=0;i<=m[k];i++)
    	   	   {
    	   	   	for(int j=0;j+i<=m[k];j++)
    	   	   	   f[k][m[k]-i]=max(a[m[k]]-(a[j+i]-a[j]),f[k][m[k]-i]);
    		   }
    	   }
    //	for(int i=1;i<=n;i++)
    //	   {
    //	   for(int j=1;j<=m[i];j++) printf("%d ",f[i][j]);
    //	   printf("
    ");
    //       }
         for(int i=1;i<=n/2;i++) sum[i]=sum[i-1]+m[i];
         if(n>=2)for(int i=1;i<=m[1];i++) p1[i]=f[1][i];
         for(int i=2;i<=n/2;i++)
           for(int j=min(sum[i],M);j>=1;j--)
                   for(int k=1;k<=min(m[i],j);k++)
                      p1[j]=max(p1[j],p1[j-k]+f[i][k]);
    //     for(int i=1;i<=sum[n/2];i++) printf("%d ",p1[i]);
    //     printf("
    ");
         sum[n/2]=0;
         for(int i=n/2+1;i<=n;i++) sum[i]=sum[i-1]+m[i];
         for(int i=n/2+1;i<=n;i++)
           for(int j=min(sum[i],M);j>=1;j--)
                   for(int k=1;k<=min(j,m[i]);k++)
                      p2[j]=max(p2[j],p2[j-k]+f[i][k]);
    //     for(int i=1;i<=sum[n];i++) printf("%d ",p2[i]);
    //     printf("
    ");
         for(int i=1;i<=M;i++) p2[i]=max(p2[i],p2[i-1]);
    	 for(int i=1;i<=M;i++) p1[i]=max(p1[i],p1[i-1]);
    //	 for(int i=1;i<=M;i++) printf("%d ",p1[i]);
    //     printf("
    ");
         for(int i=1;i<=min(sum[n],M);i++)
            ans=max(p2[i]+p1[M-i],ans);
         for(int i=1;i<=min(sum[n/2-1]+m[n/2],M);i++)
            ans=max(p1[i]+p2[M-i],ans);
         printf("%d
    ",ans);
    }

  • 相关阅读:
    JavaScript 立即执行函数和闭包
    Visual Studio2017 离线安装
    D19 Sping Boot 入门 Sping框架--Java Web之书城项目(九) AJAX
    D18 Sping Boot 入门 Sping框架--Java Web之书城项目(八) 过滤器
    D17 Sping Boot 入门 Sping框架--Java Web之Filter过滤器
    在Django中写mqtt脚本并使用
    Django对models层数据库的增删改查操作
    前端调用mqtt不能使用1883端口的问题
    vue结合mqtt
    mqtt服务器的安装(2)--mosquitto
  • 原文地址:https://www.cnblogs.com/The-Pines-of-Star/p/9878832.html
Copyright © 2020-2023  润新知