• 线性SVM分类器实战


    1 概述

    基础的理论知识参考线性SVM与Softmax分类器

    代码实现环境:python3

    2 数据处理

    2.1 加载数据集

    将原始数据集放入“data/cifar10/”文件夹下。

    ### 加载cifar10数据集
    
    import os
    import pickle
    import random
    import numpy as np
    import matplotlib.pyplot as plt
    
    def load_CIFAR_batch(filename):
        """
        cifar-10数据集是分batch存储的,这是载入单个batch
    
        @参数 filename: cifar文件名
        @r返回值: X, Y: cifar batch中的 data 和 labels
        """
    
        with open(filename,'rb') as f:
            datadict=pickle.load(f,encoding='bytes')
    
            X=datadict[b'data']
            Y=datadict[b'labels']
            
            X=X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float")
            Y=np.array(Y)
            
            return X, Y
    
    def load_CIFAR10(ROOT):
        """
        读取载入整个 CIFAR-10 数据集
    
        @参数 ROOT: 根目录名
        @return: X_train, Y_train: 训练集 data 和 labels
                 X_test, Y_test: 测试集 data 和 labels
        """
    
        xs=[]
        ys=[]
    
        for b in range(1,6):
            f=os.path.join(ROOT, "data_batch_%d" % (b, ))
            X, Y=load_CIFAR_batch(f)
            xs.append(X)
            ys.append(Y)
    
        X_train=np.concatenate(xs)
        Y_train=np.concatenate(ys)
    
        del X, Y
    
        X_test, Y_test=load_CIFAR_batch(os.path.join(ROOT, "test_batch"))
    
        return X_train, Y_train, X_test, Y_test
    
    X_train, y_train, X_test, y_test = load_CIFAR10('data/cifar10/') 
    
    print(X_train.shape)
    print(y_train.shape)
    print(X_test.shape)
    print( y_test.shape)
    

    运行结果如下:

    (50000, 32, 32, 3)
    (50000,)
    (10000, 32, 32, 3)
    (10000,)
    

    2.2 划分数据集

    将加载好的数据集划分为训练集,验证集,以及测试集。

    ## 划分训练集,验证集,测试集
    
    num_train = 49000
    num_val = 1000
    num_test = 1000
    
    # Validation set
    mask = range(num_train, num_train + num_val)
    X_val = X_train[mask]
    y_val = y_train[mask]
    
    # Train set
    mask = range(num_train)
    X_train = X_train[mask]
    y_train = y_train[mask]
    
    # Test set
    mask = range(num_test)
    X_test = X_test[mask]
    y_test = y_test[mask]
    
    print('Train data shape: ', X_train.shape)
    print('Train labels shape: ', y_train.shape)
    print('Validation data shape: ', X_val.shape)
    print('Validation labels shape ', y_val.shape)
    print('Test data shape: ', X_test.shape)
    print('Test labels shape: ', y_test.shape)
    

    运行结果为:

    Train data shape:  (49000, 3072)
    Validation data shape:  (1000, 3072)
    Test data shape:  (1000, 3072)
    

    2.3 去均值归一化

    将划分好的数据集归一化,即:所有划分好的数据集减去均值图像。

    # Processing: subtract the mean images
    mean_image = np.mean(X_train, axis=0)
    
    X_train -= mean_image
    X_val -= mean_image
    X_test -= mean_image
    
    # append the bias dimension of ones (i.e. bias trick)
    X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])#堆叠数组
    X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
    X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
    print('Train data shape: ', X_train.shape)
    print('Validation data shape: ', X_val.shape)
    print('Test data shape: ', X_test.shape)
    

    运行结果为:

    Train data shape:  (49000, 3073)
    Validation data shape:  (1000, 3073)
    Test data shape:  (1000, 3073)
    

    3 线性SVM分类器

    3.1 定义线性SVM分类器

    关键的是线性SVM的梯度推导过程。具体的可以看看这篇文章

    #Define a linear SVM classifier
    
    class LinearSVM(object):
        """ A subclass that uses the Multiclass SVM loss function """
        def __init__(self):
            self.W = None
    
        def loss_vectorized(self, X, y, reg):
            """
            Structured SVM loss function, naive implementation (with loops).
            Inputs:
            - X: A numpy array of shape (num_train, D) contain the training data
              consisting of num_train samples each of dimension D
            - y: A numpy array of shape (num_train,) contain the training labels,
              where y[i] is the label of X[i]
            - reg: (float) regularization strength
            Outputs:
            - loss: the loss value between predict value and ground truth
            - dW: gradient of W
            """
            
             # Initialize loss and dW
            loss = 0.0
            dW = np.zeros(self.W.shape)
            
            # Compute the loss
            num_train = X.shape[0]
            scores = np.dot(X, self.W)
            correct_score = scores[range(num_train), list(y)].reshape(-1, 1)    
            margin = np.maximum(0, scores - correct_score + 1) # delta = 1
            margin[range(num_train), list(y)] = 0  #分对的损失为0
            loss = np.sum(margin) / num_train + 0.5 * reg * np.sum(self.W * self.W) #reg就是权重lamda
            
            # Compute the dW
            num_classes = self.W.shape[1]
            mask = np.zeros((num_train, num_classes))
            mask[margin > 0] = 1
            mask[range(num_train), list(y)] = 0
            mask[range(num_train), list(y)] = -np.sum(mask, axis=1)
            dW = np.dot(X.T, mask)
            dW = dW / num_train + reg * self.W
            
            return loss, dW
        
        def train(self, X, y, learning_rate = 1e-3, reg = 1e-5, num_iters = 100, 
                 batch_size = 200, print_flag = False):
            """
            Train linear SVM classifier using SGD
            Inputs:
            - X: A numpy array of shape (num_train, D) contain the training data
              consisting of num_train samples each of dimension D
            - y: A numpy array of shape (num_train,) contain the training labels,
              where y[i] is the label of X[i], y[i] = c, 0 <= c <= C
            - learning rate: (float) learning rate for optimization
            - reg: (float) regularization strength
            - num_iters: (integer) numbers of steps to take when optimization
            - batch_size: (integer) number of training examples to use at each step
            - print_flag: (boolean) If true, print the progress during optimization
            Outputs:
            - loss_history: A list containing the loss at each training iteration
            """
            
            loss_history = []
            num_train = X.shape[0]
            dim = X.shape[1]
            num_classes = np.max(y) + 1
            
            # Initialize W
            if self.W == None:
                self.W = 0.001 * np.random.randn(dim, num_classes)
            
            # iteration and optimization
            for t in range(num_iters):
                idx_batch = np.random.choice(num_train, batch_size, replace=True)
                X_batch = X[idx_batch]
                y_batch = y[idx_batch]
                loss, dW = self.loss_vectorized(X_batch, y_batch, reg)
                loss_history.append(loss)
                self.W += -learning_rate * dW
                
                if print_flag and t%100 == 0:
                    print('iteration %d / %d: loss %f' % (t, num_iters, loss))
            
            return loss_history
        
        def predict(self, X):
            """
            Use the trained weights of linear SVM to predict data labels
            Inputs:
            - X: A numpy array of shape (num_train, D) contain the training data
            Outputs:
            - y_pred: A numpy array, predicted labels for the data in X
            """
            
            y_pred = np.zeros(X.shape[0])
            scores = np.dot(X, self.W)
            y_pred = np.argmax(scores, axis=1)
            
            return y_pred        
    

    3.2 无交叉验证

    3.2.1 训练模型

    ##Stochastic Gradient Descent
    
    svm = LinearSVM()
    loss_history = svm.train(X_train, y_train, learning_rate = 1e-7, reg = 2.5e4, num_iters = 2000, 
                 batch_size = 200, print_flag = True)
    

    运行结果如下:

    iteration 0 / 2000: loss 407.076351
    iteration 100 / 2000: loss 241.030820
    iteration 200 / 2000: loss 147.135737
    iteration 300 / 2000: loss 90.274781
    iteration 400 / 2000: loss 56.509895
    iteration 500 / 2000: loss 36.654007
    iteration 600 / 2000: loss 23.732160
    iteration 700 / 2000: loss 16.340341
    iteration 800 / 2000: loss 11.538806
    iteration 900 / 2000: loss 9.482515
    iteration 1000 / 2000: loss 7.414343
    iteration 1100 / 2000: loss 6.240377
    iteration 1200 / 2000: loss 5.774960
    iteration 1300 / 2000: loss 5.569365
    iteration 1400 / 2000: loss 5.326023
    iteration 1500 / 2000: loss 5.708757
    iteration 1600 / 2000: loss 4.731255
    iteration 1700 / 2000: loss 5.516500
    iteration 1800 / 2000: loss 4.959480
    iteration 1900 / 2000: loss 5.447249
    

    3.2.2 预测

    # Use svm to predict
    # Training set
    y_pred = svm.predict(X_train)
    num_correct = np.sum(y_pred == y_train)
    accuracy = np.mean(y_pred == y_train)
    print('Training correct %d/%d: The accuracy is %f' % (num_correct, X_train.shape[0], accuracy))
    
    # Test set
    y_pred = svm.predict(X_test)
    num_correct = np.sum(y_pred == y_test)
    accuracy = np.mean(y_pred == y_test)
    print('Test correct %d/%d: The accuracy is %f' % (num_correct, X_test.shape[0], accuracy))
    

    运行结果如下:

    Training correct 18799/49000: The accuracy is 0.383653
    Test correct 386/1000: The accuracy is 0.386000
    

    3.3 有交叉验证

    3.3.1 训练模型

    #Cross-validation
    
    learning_rates = [1.4e-7, 1.5e-7, 1.6e-7]
    regularization_strengths = [8000.0, 9000.0, 10000.0, 11000.0, 18000.0, 19000.0, 20000.0, 21000.0]
    
    results = {}
    best_lr = None
    best_reg = None
    best_val = -1   # The highest validation accuracy that we have seen so far.
    best_svm = None # The LinearSVM object that achieved the highest validation rate.
    
    for lr in learning_rates:
        for reg in regularization_strengths:
            svm = LinearSVM()
            loss_history = svm.train(X_train, y_train, learning_rate = lr, reg = reg, num_iters = 2000)
            y_train_pred = svm.predict(X_train)
            accuracy_train = np.mean(y_train_pred == y_train)
            y_val_pred = svm.predict(X_val)
            accuracy_val = np.mean(y_val_pred == y_val)
            if accuracy_val > best_val:
                best_lr = lr
                best_reg = reg
                best_val = accuracy_val
                best_svm = svm
            results[(lr, reg)] = accuracy_train, accuracy_val
            print('lr: %e reg: %e train accuracy: %f val accuracy: %f' %
                  (lr, reg, results[(lr, reg)][0], results[(lr, reg)][1]))
    print('Best validation accuracy during cross-validation:
    lr = %e, reg = %e, best_val = %f' %
          (best_lr, best_reg, best_val))     
    

    3.3.2 预测

    # Use the best svm to test
    y_test_pred = best_svm.predict(X_test)
    num_correct = np.sum(y_test_pred == y_test)
    accuracy = np.mean(y_test_pred == y_test)
    print('Test correct %d/%d: The accuracy is %f' % (num_correct, X_test.shape[0], accuracy))
    

    运行结果为:

    Test correct 372/1000: The accuracy is 0.372000
    
  • 相关阅读:
    SAP系统管理中常见问题解答(转载)
    STMS传输队列中的请求状态一直是Running不能结束
    通过Tcode查找Badi或者客户出口
    通过LDB_PROCESS函数使用逻辑数据库
    ABAP读取长文本的方法
    SAP增强Enhancement
    ABAP开发顾问必备:SAP ABAP开发技术总结[转载]
    SAP事件 Event Flow(转载)
    jQuery中的text()、html()和val()以及javaScript中的innerText、innerHTML和value
    js访问对象属性的方式“.”与“[]”的区别
  • 原文地址:https://www.cnblogs.com/Terrypython/p/10984227.html
Copyright © 2020-2023  润新知