今天想了一下这类题目,对于要O(√N)的优化,首先有式子:
Σ[n/(d×k)]*[m/(d×k)] (中括号是向下取整)
这里给出我的发现:
[n/(k×d)]=[[n/d]/k],设n/d=x+y x是整数部分,y是小数部分,现在只需证明[x/k]=[(x+y)/k],我总是yy y无限的接近1,然后x/k的小数部分无限地接近1,这样是否有可能出现不符的情况?不会,因为要让得数多1,那么至少要加1,而不是y这个小数能满足的。
今天想了一下这类题目,对于要O(√N)的优化,首先有式子: