• 异或运算符(^)、与运算符(&)、或运算符(|)、反运算符(~)、右移运算符(>>)、无符号右移运算符(>>>)


    异或(^)、异或和 的性质及应用总结

    异或的含义

    异或运算与一般的逻辑或不同,异或算符的值为真仅当两个运算元中恰有一个的值为真,而另外一个的值为非真。转化为命题,就是:“两者的值不同。”或“有且仅有一个为真。”符号为 XOR 或 EOR 或 ⊕(编程语言中常用^)。

    或在数学中的含义:一个元素在集合A中或在集合B中,或的维恩图如下:

    img

    而异或是不允许共存的,所以 A ^ B 的维恩图如下:

    img

    同理对于 A ^ B ^ C 维恩图:

    img

    异或运算{displaystyle Aoplus B}Aoplus B 的真值表如下:F表示false,T代表true

    A B
    F F F
    F T T
    T F T
    T T F
    A B
    0 0 0
    1 1 1
    1 0 1
    1 1 0

    任何数异或自己=把自己置0

    异或的性质:满足交换律和结合律

    • 交换律:A ^ B = B ^ A;
    • 结合律:A ^ (B ^ C) = (A ^ B) ^ C;
    • 恒等律:X ^ 0 = X;
    • 归零律:X ^ X = 0;
    • 自反:A ^ B ^ B = A ^ 0 = A;
    • 对于任意的 X: X ^ (-1) = ~X;
    • 如果 A ^ B = C 成立,那么 A ^ B = C,B ^ C = A;

    异或的应用

    1-1000放在含有1001个元素的数组中,只有唯一的一个元素重复,找出这个重复的数字。要求不能使用辅助存储空间并且数组的每个元素只能访问一次。

    解法一:将这1001个元素加起来的和减去1+2+……+1000,所得的值就是重复的数字(数据过大容易溢出)。

    解法二:异或

    将1001个数全部异或得到的值再与12……^1000的结果再次异或,这样就避免了数据过大溢出的情况。

    首先,异或运算满足交换律和结合律,即a^b = ba,(ab)^c = a(bc)。令重复的数字为n:

    所以1 ^ 2 ^ … ^ n ^ n ^ … ^ 1000 = 1 ^ 2 ^ … ^ 1000 ^ (n ^ n) = 1 ^ 2 ^ … ^ 1000 ^ 0 = 1 ^ 2 ^ … ^ 1000(即序列中除了重复数字 n 以外所有数的异或。

    如果令1 ^ 2 ^ … ^ 1000(序列中不包含n)的结果为T,那么1 ^ 2 ^ … ^ 1000(序列中包含n)的结果就是 T^n,T ^ (T ^ n) = n。

    变形:一个数组存放若干整数,一个数出现奇数次,其余数均出现偶数次,找出这个出现奇数次的数。

    解法与上面的解法二相同。

    快速比较两个数值是否相等

    a == b a^b == 0

    不用额外内存,交换两个数的值

    a ^= b;

    b ^= a;

    a ^= b;

    检验和恢复,RAID5

    校验和恢复主要利用的了异或的特性:IF a ^ b = c THEN a ^ c = b 应用:一个很好的应用实例是RAID5,使用3块磁盘(A、B、C)组成RAID5阵列,当用户写数据时,将数据分成两部分,分别写到磁盘A和磁盘B,A ^ B的结果写到磁盘C;当读取A的数据时,通过B ^ C可以对A的数据做校验,当A盘出错时,通过B ^ C也可以恢复A盘的数据。

    使用异或使某些特定位翻转

    翻转10100001的第6位, 答案:可以将该数与00100000进行按位异或运算; 10100001 ^ 00100000 = 10000001

    一个整型数组里除了N个数字之外,其他的数字都出现了两次,找出这N个数字

    比如,从{1, 2, 3, 4, 5, 3, 2, 4, 5}中找出单个的数字: 1

    1^2^3^4^5^3^2^4^5 = 1
    

    根据以上异或运算的特征,可以有以下用途,除方便直观外,运算性能也更加优异。

    变量重置0

    假设有一个变量15,二进制表示为0000 1111

    0000 1111 ^ 0000 1111 = 0000 0000

    a = 0000 1111

    a = a ^ a

    结论:同变量本身异或运算,可以将变量重置0。

    指定位置取反

    假设有一个变量15,二进制表示为0000 1111,将第3,4,8位取反。

    0000 1111 ^ 1000 1100 = 1000 0011

    结论:同指定取反位为1,其他位为0的变量进行异或运算,可以将指定位置取反。

    取反后的结果,同原指定取反变量异或,可以还原变量:

    1000 0011 ^ 1000 1100 = 0000 1111(15)

    加密解密

    假设有一个变量15,二进制表示为0000 1111,密码子为0101 0101。

    加密:0000 1111 ^ 0101 0101 = 0101 1010

    加密后结果是90。

    将加密后结果同密码子异或,可以进行解密

    0101 1010 ^ 0101 0101 = 0000 1111

    解密后结果是15。

    二值交换

    假设两个变量:a = 15(0000 1111), b= 23(0001 0111),将两个变量交换。

    1、a = a ^ b = 0000 1111 ^ 0001 0111 = 0001 1000

    2、b = b ^ a = 0001 0111 ^ 0001 1000 = 0000 1111(15)

    3、a = a ^ b = 0001 1000 ^ 0000 1111 = 0001 0111(23)

    结论:二值交换实际上是利用了加密解密的特性。

    1、a和b异或,可以把结果x看作是a、b互为密码子进行加密。

    2、将x,同b(原值)异或,也就是把b作为密码子,因此可以还原a,赋值给b。

    3、将x,同b(此时为a)异或,也就是把b(此时为a)作为密码子,因此还原出的值为原b,赋值给a。交换结束。

    判断两值是否相等

    利用同变量本身异或运算,可以将变量重置0的特性。

    假设:a = 0000 1111,b = 0000 1111,则 a ^ b == 0

    假设:a = 0000 1111,b = 0000 0001,则 a ^ b != 0

    结论:当两个变量相等时,异或结果为0。

    按位 与运算符(&)

    参加运算的两个数据,按二进制位进行“与”运算。

    运算规则:0&0=0; 0&1=0; 1&0=0; 1&1=1;

      即:两位同时为“1”,结果才为“1”,否则为0
    

    例如:3&5 即 0000 0011& 0000 0101 = 00000001 因此,3&5的值得1。

    另,负数按补码形式参加按位与运算。

    “与运算”的特殊用途:

    (1)清零。如果想将一个单元清零,即使其全部二进制位为0,只要与一个各位都为零的数值相与,结果为零。

    (2)取一个数中指定位

    方法:找一个数,对应X要取的位,该数的对应位为1,其余位为零,此数与X进行“与运算”可以得到X中的指定位。

    例:设X=10101110,

    取X的低4位,用 X & 0000 1111 = 00001110 即可得到;

    还可用来取X的2、4、6位。

    按位 或运算符(|)

    参加运算的两个对象,按二进制位进行“或”运算。

    运算规则:0|0=0; 0|1=1; 1|0=1; 1|1=1;

     即 :参加运算的两个对象只要有一个为1,其值为1。
    

    例如:3|5 即 00000011 | 0000 0101 = 00000111 因此,3|5的值得7。 

    另,负数按补码形式参加按位或运算。

    “或运算”特殊作用:

    (1)常用来对一个数据的某些位置1。

    方法:找到一个数,对应X要置1的位,该数的对应位为1,其余位为零。此数与X相或可使X中的某些位置1。

    例:将X=10100000的低4位置1 ,用X | 0000 1111 = 1010 1111即可得到。

    取 反运算符(~)

    参加运算的一个数据,按二进制位进行“取反”运算。

    运算规则:~1=0; ~0=1;

     即:对一个二进制数按位取反,即将0变1,1变0。
    

    使一个数的最低位为零,可以表示为:a&~1。

    1的值为1111111111111110,再按“与”运算,最低位一定为0。因为“”运算符的优先级比算术运算符、关系运算符、逻辑运算符和其他运算符都高。

    左移运算符(<<)
    将一个运算对象的各二进制位全部左移若干位(左边的二进制位丢弃,右边补0)。

    例:a = a<< 2将a的二进制位左移2位,右补0,

    左移1位后a = a *2;

    若左移时舍弃的高位不包含1,则每左移一位,相当于该数乘以2。

    右移运算符(>>)

    将一个数的各二进制位全部右移若干位,正数左补0,负数左补1,右边丢弃。

    操作数每右移一位,相当于该数除以2。

    例如:a = a>> 2 将a的二进制位右移2位,

    左补0 or 补1得看被移数是正还是负。

    运算符把expression1 的所有位向右移 expression2指定的位数。expression1的符号位被用来填充右移后左边空出来的位。向右移出的位被丢弃。

    例如,下面的代码被求值后,temp 的值是 -4:

    -14 (即二进制的 11110010)右移两位等于 -4(即二进制的 11111100)。

    var temp = -14 >> 2

    无符号右移运算符(>>>)

    运算符把 expression1 的各个位向右移expression2 指定的位数。右移后左边空出的位用零来填充。移出右边的位被丢弃。

    例如:var temp = -14 >>>2

    变量 temp的值为 -14 (即二进制的 11111111 11111111 1111111111110010),向右移两位后等于 1073741820 (即二进制的 00111111 11111111 1111111111111100)。

    复合赋值运算符
    位运算符与赋值运算符结合,组成新的复合赋值运算符,它们是:

    &= 例:a &=b 相当于a=a& b

    |= 例:a |=b 相当于a=a |b

    = 例:a >>=b 相当于a=a>> b

    <<= 例:a<<=b 相当于a=a<< b

    ^= 例:a ^= b 相当于a=a^ b

    运算规则:和前面讲的复合赋值运算符的运算规则相似。

    不同长度的数据进行位运算
    如果两个不同长度的数据进行位运算时,系统会将二者按右端对齐,然后进行位运算。

    以“与”运算为例说明如下:我们知道在C语言中long型占4个字节,int型占2个字节,如果一个long型数据与一个int型数据进行“与”运算,右端对齐后,左边不足的位依下面三种情况补足,

    (1)如果整型数据为正数,左边补16个0。

    (2)如果整型数据为负数,左边补16个1。

    (3)如果整形数据为无符号数,左边也补16个0。

    如:long a=123;int b=1;计算a& b。

    如:long a=123;int b=-1;计算a& b。

    如:long a=123;unsigned intb=1;计算a & b。

  • 相关阅读:
    (01)Hadoop简介
    (08)java程序连接kafka示例
    (02)使用 java -classpath 命令运行jar包脚本
    (01)Eclipse中导出jar包
    (07)Kafka核心配置详解
    (06)Kafka工作原理解析
    HDU
    HDU
    POJ3525:Most Distant Point from the Sea(二分+半平面交)
    POJ
  • 原文地址:https://www.cnblogs.com/TMesh/p/11847156.html
Copyright © 2020-2023  润新知