• 使用kibana操作elasticsearch7.x 教程


    由于elasticsearch7.x取消了type(类型的概念)对应数据库表的概念

    kibana的配置以及安装地址:https://www.cnblogs.com/TJ21/p/12642219.html

    添加一个索引

    PUT 索引名
    {
    "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
    }
    }

    创建映射字段

    analyzer:分词器    下载地址:https://github.com/medcl/elasticsearch-analysis-ik

    PUT /索引名/_mapping
    {
    "properties": {
    "title":{
    "type": "text",
    "analyzer": "ik_max_word"
    },
    "images":{
    "type": "keyword",
    "index": false
    },
    "price":{
    "type": "float"
    }
    }
    }

    查看映射关系

    GET /索引名/_mapping

    新增数据

    随机生成id

    POST /索引库名/_doc
    {
    "title":"大米手机",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":2899.00
    }

    自定义id   

    自定义id值不能重复,否则数据将会被覆盖

    POST /索引库名/_doc/自定义id值
    {
        "title":"超米手机",
        "images":"http://image.leyou.com/12479122.jpg",
        "price":3699.00,
        "Saleable":true
    }

    修改数据,

    将上面自定义id的请求方式修改

    PUT /索引库/_doc/id值
    {
    "title":"超大米手机",
    "images":"http://image.leyou.com/12479122.jpg",
    "price":3899.00,
    "stock": 100,
    "saleable":true
    }

    删除数据

    DELETE /索引库名/_doc/id值

    查询

    查询所有

    GET /索引库名/_search 
    {
    "query": {
    "match_all": {}
    }
    }

    响应内容:

    {
      "took" : 0,
      "timed_out" : false,
      "_shards" : {
        "total" : 1,
        "successful" : 1,
        "skipped" : 0,
        "failed" : 0
      },
      "hits" : {
        "total" : {
          "value" : 6,
          "relation" : "eq"
        },
        "max_score" : 1.0,
        "hits" : [
          {
            "_index" : "goods",
            "_type" : "_doc",
            "_id" : "1",
            "_score" : 1.0,
            "_source" : {
              "title" : "小米手机",
              "images" : "http://image.leyou.com/12479122.jpg",
              "price" : 2699.0,
              "Saleable" : true
            }
          },
          {
            "_index" : "goods",
            "_type" : "_doc",
            "_id" : "mmHtSnEBVcsVh4Caiarl",
            "_score" : 1.0,
            "_source" : {
              "title" : "大米手机",
              "images" : "http://image.leyou.com/12479122.jpg",
              "price" : 2899.0
            }
          },
          {
            "_index" : "goods",
            "_type" : "_doc",
            "_id" : "2",
            "_score" : 1.0,
            "_source" : {
              "title" : "超米手机",
              "images" : "http://image.leyou.com/12479122.jpg",
              "price" : 3699.0,
              "Saleable" : true
            }
          },
          {
            "_index" : "goods",
            "_type" : "_doc",
            "_id" : "3",
            "_score" : 1.0,
            "_source" : {
              "title" : "小米电视4A",
              "images" : "http://image.leyou.com/12479122.jpg",
              "price" : 4699.0,
              "Saleable" : true
            }
          },
          {
            "_index" : "goods",
            "_type" : "_doc",
            "_id" : "4",
            "_score" : 1.0,
            "_source" : {
              "title" : "华为手机",
              "subTitle" : "小米",
              "images" : "http://image.leyou.com/12479122.jpg",
              "price" : 4699.0
            }
          },
          {
            "_index" : "goods",
            "_type" : "_doc",
            "_id" : "5",
            "_score" : 1.0,
            "_source" : {
              "title" : "oppo",
              "subTitle" : "小米",
              "images" : "http://image.leyou.com/12479122.jpg",
              "price" : 4899.0
            }
          }
        ]
      }
    }
    View Code

    字段解析:

    - took:查询花费时间,单位是毫秒
    - time_out:是否超时
    - _shards:分片信息
    - hits:搜索结果总览对象
      - total:搜索到的总条数
      - max_score:所有结果中文档得分的最高分
      - hits:搜索结果的文档对象数组,每个元素是一条搜索到的文档信息
        - _index:索引库
        - _type:文档类型
        - _id:文档id
        - _score:文档得分
        - _source:文档的源数据
    View Code

    # 匹配查询

    GET /索引库名/_search
    {
    "query": {
    "match": {
    "title": {
    "query": "小米手机电视",
    "minimum_should_match": "60%"
    }
    }
    }
    }


    #多字段查询 

    title,subTitle字段名

    GET /索引库名/_search
    {
    "query": {
    "multi_match": {
    "query": "小米",
    "fields":["title","subTitle"]
    }
    }
    }

    #1.词条查询     

     可分割的最小词条单位   title为字段名  [ "字段值" ]

    GET /索引库名/_search
    {
      "query": {
        "terms": {
            "title": ["小米","手机"]
        }
      }
    }

    #2.多词条查询

    GET /索引库名/_search
    {
    "query": {
    "terms": {
    "title": ["小米","手机"]
    }
    }
    }

    # 结果过滤   

    excludes:不显示的字段    includes: 显示的字段

    GET /索引库名/_search
    {
    "_source": {
    "excludes": "{images}"
    }, 
    "query": {
    "terms": {
    "title": ["小米","手机"]
    }
    }
    }

    #布尔查询

    标题一定有小米,或者价格为2699,4699

    bool把各种其它查询通过must(与)、must_not(非)、should(或)的方式进行组合

    GET /索引库名/_search
    {
    "query": {
    "bool": {
    "must": [
    {"match": {
    "title": "小米"
    }
    }
    ],
    "should": [
    {"terms": {
    "price": [
    "2699",
    "2799"
    ]
    }}
    ]
    }
    }
    }

    # 范围查询

    价格大于等于2799 小于等于3899

    GET /索引库名/_search
    {
    "query": {
    "range": {
    "price": {
    "gte": 2799,
    "lte": 3899
    }
    }
    }
    }
    

      

    # 模糊查询

    标题为oppo 默认允许错误一个字母,最大为两个字母 正确标题 oppo

    fuzziness:配置篇里

    GET /索引库名/_search
    {
    "query": {
    "fuzzy": {
    "title": {
    "value": "oope",
    "fuzziness": 2
    }
    }
    }
    }


    # 过滤filter

    不会影响查询的分数_score

    GET /索引库名/_search
    {
    "query": {
    "bool": {
    "must": [
    {
    "match": {
    "title": "小米"
    }
    }
    ],
    "filter": [
    {
    "range": {
    "price": {
    "gte": 2699,
    "lte": 4999
    }
    }
    }
    ]
    }
    }
    }

    #排序

    GET /索引库名/_search
    {
    "query": {
    "bool": {
    "filter": [
    {
    "range": {
    "price": {
    "gte": 2699,
    "lte": 4999
    }
    }
    }
    ]
    }
    },
    "sort": [
    {
    "price": {
    "order": "desc"
    }
    },
    {
    "_id":{
    "order": "asc"
    }
    }
    ]
    }

    聚合 aggregations

    聚合可以让我们极其方便的实现对数据的统计、分析。例如:

    • 什么品牌的手机最受欢迎?

    • 这些手机的平均价格、最高价格、最低价格?

    • 这些手机每月的销售情况如何?

    实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现实时搜索效果。

     

    4.1 基本概念

    Elasticsearch中的聚合,包含多种类型,最常用的两种,一个叫,一个叫度量

    桶(bucket)

    桶的作用,是按照某种方式对数据进行分组,每一组数据在ES中称为一个,例如我们根据国籍对人划分,可以得到中国桶英国桶日本桶……或者我们按照年龄段对人进行划分:0~10,10~20,20~30,30~40等。

    Elasticsearch中提供的划分桶的方式有很多:

    • Date Histogram Aggregation:根据日期阶梯分组,例如给定阶梯为周,会自动每周分为一组

    • Histogram Aggregation:根据数值阶梯分组,与日期类似

    • Terms Aggregation:根据词条内容分组,词条内容完全匹配的为一组

    • Range Aggregation:数值和日期的范围分组,指定开始和结束,然后按段分组

    • ……

     

    bucket aggregations 只负责对数据进行分组,并不进行计算,因此往往bucket中往往会嵌套另一种聚合:metrics aggregations即度量

     

    度量(metrics)

    分组完成以后,我们一般会对组中的数据进行聚合运算,例如求平均值、最大、最小、求和等,这些在ES中称为度量

    比较常用的一些度量聚合方式:

    • Avg Aggregation:求平均值

    • Max Aggregation:求最大值

    • Min Aggregation:求最小值

    • Percentiles Aggregation:求百分比

    • Stats Aggregation:同时返回avg、max、min、sum、count等

    • Sum Aggregation:求和

    • Top hits Aggregation:求前几

    • Value Count Aggregation:求总数

    • …… 

    使用聚合先加入新的索引

    PUT /cars
    {
    "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
    },
    "mappings": {
    "properties": {
    "color": {
    "type": "keyword"
    },
    "make": {
    "type": "keyword"
    }
    }
    }
    }

    批量添加数据

    POST /cars/_bulk
    { "index": {}}
    { "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
    { "index": {}}
    { "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
    { "index": {}}
    { "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
    { "index": {}}
    { "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
    { "index": {}}
    { "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
    { "index": {}}
    { "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
    { "index": {}}
    { "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
    { "index": {}}
    { "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }

    #聚合为桶

    GET /cars/_search
    {
    "aggs": {
    "color": {
    "terms": {
    "field": "color"
    }
    }
    }
    }

    #桶内度量   

    GET /cars/_search
    {
    "size": 0, 
    "aggs": {
    "color": {
    "terms": {
    "field": "color"
    },
    "aggs": {
    "avg_price": {
    "avg": {
    "field": "price"
    }
    }
    }
    }
    }
    }

    #桶内嵌套桶

    GET /cars/_search
    {
    "size": 0,
    "aggs": {
    "color": {
    "terms": {
    "field": "color"
    },
    "aggs": {
    "avg_price": {
    "avg": {
    "field": "price"
    }
    },
    "mark":{
    "terms": {
    "field": "make"
    }
    }
    }
    }
    }
    }

    #阶梯分组

    对价格进行阶梯分组,最小数量为1才显示

    GET /cars/_search
    {
    "size": 0,
    "aggs": {
    "price_histogram": {
    "histogram": {
    "field": "price",
    "interval": 5000,
    "min_doc_count": 1
    }
    }
    }
    }

    #范围分组

    GET /cars/_search
    {
    "size": 0,
    "aggs": {
    "price_range": {
    "range": {
    "field": "price",
    "ranges": [
    {
    "from": 5000,
    "to": 15000
    },
    {
    "from": 15000,
    "to": 20000
    },
    {
    "from": 20000,
    "to": 25000
    },
    {
    "from": 25000,
    "to":35000
    },
    {
    "from": 35000,
    "to":40000
    }
    ]
    }
    }
    }
    }
  • 相关阅读:
    安利一个_Java学习笔记总结
    九涯的第一次
    attrs 资源文件 自定义属性
    EditText
    ArrayList 数组 初始化方法
    HTTP Retrofit 网络传输
    画布Canvas 画笔Paint
    View控件跟随鼠标移动
    ViewPager和Fragment中的View的点击事件冲突
    圆形图片 ImageView
  • 原文地址:https://www.cnblogs.com/TJ21/p/12642146.html
Copyright © 2020-2023  润新知