• 一些资料的备份


    ASCII码对照表

    一些IDA宏定义,背不掉所以直接Backup一份QWQ

    /*
    
    This file contains definitions used by the Hex-Rays decompiler output.
    It has type definitions and convenience macros to make the
    output more readable.
    
    Copyright © 2007-2011 Hex-Rays
    
    */
    
    #if defined(GNUC)
    typedef long long ll;
    typedef unsigned long long ull;
    #define __int64 long long
    #define __int32 int
    #define __int16 short
    #define __int8 char
    #define MAKELL(num) num ## LL
    #define FMT_64 “ll”
    #elif defined(_MSC_VER)
    typedef __int64 ll;
    typedef unsigned __int64 ull;
    #define MAKELL(num) num ## i64
    #define FMT_64 “I64”
    #elif defined (BORLANDC)
    typedef __int64 ll;
    typedef unsigned __int64 ull;
    #define MAKELL(num) num ## i64
    #define FMT_64 “L”
    #else
    #error “unknown compiler”
    #endif
    typedef unsigned int uint;
    typedef unsigned char uchar;
    typedef unsigned short ushort;
    typedef unsigned long ulong;
    
    typedef char int8;
    typedef signed char sint8;
    typedef unsigned char uint8;
    typedef short int16;
    typedef signed short sint16;
    typedef unsigned short uint16;
    typedef int int32;
    typedef signed int sint32;
    typedef unsigned int uint32;
    typedef ll int64;
    typedef ll sint64;
    typedef ull uint64;
    
    // Partially defined types:
    #define _BYTE uint8
    #define _WORD uint16
    #define _DWORD uint32
    #define _QWORD uint64
    #if !defined(_MSC_VER)
    #define _LONGLONG __int128
    #endif
    
    #ifndef WINDOWS
    typedef int8 BYTE;
    typedef int16 WORD;
    typedef int32 DWORD;
    typedef int32 LONG;
    #endif
    typedef int64 QWORD;
    #ifndef __cplusplus
    typedef int bool; // we want to use bool in our C programs
    #endif
    
    // Some convenience macros to make partial accesses nicer
    // first unsigned macros:
    #define LOBYTE(x) (((_BYTE)&(x))) // low byte
    #define LOWORD(x) (((_WORD)&(x))) // low word
    #define LODWORD(x) (((_DWORD)&(x))) // low dword
    #define HIBYTE(x) (((_BYTE)&(x)+1))
    #define HIWORD(x) (((_WORD)&(x)+1))
    #define HIDWORD(x) (((_DWORD)&(x)+1))
    #define BYTEn(x, n) (((_BYTE)&(x)+n))
    #define WORDn(x, n) (((_WORD)&(x)+n))
    #define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
    #define BYTE2(x) BYTEn(x, 2)
    #define BYTE3(x) BYTEn(x, 3)
    #define BYTE4(x) BYTEn(x, 4)
    #define BYTE5(x) BYTEn(x, 5)
    #define BYTE6(x) BYTEn(x, 6)
    #define BYTE7(x) BYTEn(x, 7)
    #define BYTE8(x) BYTEn(x, 8)
    #define BYTE9(x) BYTEn(x, 9)
    #define BYTE10(x) BYTEn(x, 10)
    #define BYTE11(x) BYTEn(x, 11)
    #define BYTE12(x) BYTEn(x, 12)
    #define BYTE13(x) BYTEn(x, 13)
    #define BYTE14(x) BYTEn(x, 14)
    #define BYTE15(x) BYTEn(x, 15)
    #define WORD1(x) WORDn(x, 1)
    #define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
    #define WORD3(x) WORDn(x, 3)
    #define WORD4(x) WORDn(x, 4)
    #define WORD5(x) WORDn(x, 5)
    #define WORD6(x) WORDn(x, 6)
    #define WORD7(x) WORDn(x, 7)
    
    // now signed macros (the same but with sign extension)
    #define SLOBYTE(x) (((int8)&(x)))
    #define SLOWORD(x) (((int16)&(x)))
    #define SLODWORD(x) (((int32)&(x)))
    #define SHIBYTE(x) (((int8)&(x)+1))
    #define SHIWORD(x) (((int16)&(x)+1))
    #define SHIDWORD(x) (((int32)&(x)+1))
    #define SBYTEn(x, n) (((int8)&(x)+n))
    #define SWORDn(x, n) (((int16)&(x)+n))
    #define SBYTE1(x) SBYTEn(x, 1)
    #define SBYTE2(x) SBYTEn(x, 2)
    #define SBYTE3(x) SBYTEn(x, 3)
    #define SBYTE4(x) SBYTEn(x, 4)
    #define SBYTE5(x) SBYTEn(x, 5)
    #define SBYTE6(x) SBYTEn(x, 6)
    #define SBYTE7(x) SBYTEn(x, 7)
    #define SBYTE8(x) SBYTEn(x, 8)
    #define SBYTE9(x) SBYTEn(x, 9)
    #define SBYTE10(x) SBYTEn(x, 10)
    #define SBYTE11(x) SBYTEn(x, 11)
    #define SBYTE12(x) SBYTEn(x, 12)
    #define SBYTE13(x) SBYTEn(x, 13)
    #define SBYTE14(x) SBYTEn(x, 14)
    #define SBYTE15(x) SBYTEn(x, 15)
    #define SWORD1(x) SWORDn(x, 1)
    #define SWORD2(x) SWORDn(x, 2)
    #define SWORD3(x) SWORDn(x, 3)
    #define SWORD4(x) SWORDn(x, 4)
    #define SWORD5(x) SWORDn(x, 5)
    #define SWORD6(x) SWORDn(x, 6)
    #define SWORD7(x) SWORDn(x, 7)
    
    // Helper functions to represent some assembly instructions.
    
    #ifdef __cplusplus
    
    // Fill memory block with an integer value
    inline void memset32(void *ptr, uint32 value, int count)
    {
    uint32 *p = (uint32 *)ptr;
    for ( int i=0; i < count; i++ )
    *p++ = value;
    }
    
    // Generate a reference to pair of operands
    template int16 PAIR( int8 high, T low) { return ((( int16)high) << sizeof(high)*8) | uint8(low); }
    template int32 PAIR( int16 high, T low) { return ((( int32)high) << sizeof(high)*8) | uint16(low); }
    template int64 PAIR( int32 high, T low) { return ((( int64)high) << sizeof(high)*8) | uint32(low); }
    template uint16 PAIR(uint8 high, T low) { return (((uint16)high) << sizeof(high)*8) | uint8(low); }
    template uint32 PAIR(uint16 high, T low) { return (((uint32)high) << sizeof(high)*8) | uint16(low); }
    template uint64 PAIR(uint32 high, T low) { return (((uint64)high) << sizeof(high)*8) | uint32(low); }
    
    // rotate left
    template T ROL(T value, uint count)
    {
    const uint nbits = sizeof(T) * 8;
    count %= nbits;
    
    T high = value >> (nbits - count);
    value <<= count;
    value |= high;
    return value;
    }
    
    // rotate right
    template T ROR(T value, uint count)
    {
    const uint nbits = sizeof(T) * 8;
    count %= nbits;
    
    T low = value << (nbits - count);
    value >>= count;
    value |= low;
    return value;
    }
    
    // carry flag of left shift
    template int8 MKCSHL(T value, uint count)
    {
    const uint nbits = sizeof(T) * 8;
    count %= nbits;
    
    return (value >> (nbits-count)) & 1;
    }
    
    // carry flag of right shift
    template int8 MKCSHR(T value, uint count)
    {
    return (value >> (count-1)) & 1;
    }
    
    // sign flag
    template int8 SETS(T x)
    {
    if ( sizeof(T) == 1 )
    return int8(x) < 0;
    if ( sizeof(T) == 2 )
    return int16(x) < 0;
    if ( sizeof(T) == 4 )
    return int32(x) < 0;
    return int64(x) < 0;
    }
    
    // overflow flag of subtraction (x-y)
    template<class T, class U> int8 OFSUB(T x, U y)
    {
    if ( sizeof(T) < sizeof(U) )
    {
    U x2 = x;
    int8 sx = SETS(x2);
    return (sx ^ SETS(y)) & (sx ^ SETS(x2-y));
    }
    else
    {
    T y2 = y;
    int8 sx = SETS(x);
    return (sx ^ SETS(y2)) & (sx ^ SETS(x-y2));
    }
    }
    
    // overflow flag of addition (x+y)
    template<class T, class U> int8 OFADD(T x, U y)
    {
    if ( sizeof(T) < sizeof(U) )
    {
    U x2 = x;
    int8 sx = SETS(x2);
    return ((1 ^ sx) ^ SETS(y)) & (sx ^ SETS(x2+y));
    }
    else
    {
    T y2 = y;
    int8 sx = SETS(x);
    return ((1 ^ sx) ^ SETS(y2)) & (sx ^ SETS(x+y2));
    }
    }
    
    // carry flag of subtraction (x-y)
    template<class T, class U> int8 CFSUB(T x, U y)
    {
    int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
    if ( size == 1 )
    return uint8(x) < uint8(y);
    if ( size == 2 )
    return uint16(x) < uint16(y);
    if ( size == 4 )
    return uint32(x) < uint32(y);
    return uint64(x) < uint64(y);
    }
    
    // carry flag of addition (x+y)
    template<class T, class U> int8 CFADD(T x, U y)
    {
    int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
    if ( size == 1 )
    return uint8(x) > uint8(x+y);
    if ( size == 2 )
    return uint16(x) > uint16(x+y);
    if ( size == 4 )
    return uint32(x) > uint32(x+y);
    return uint64(x) > uint64(x+y);
    }
    
    #else
    // The following definition is not quite correct because it always returns
    // uint64. The above C++ functions are good, though.
    #define PAIR(high, low) (((uint64)(high)<<sizeof(high)*8) | low)
    // For C, we just provide macros, they are not quite correct.
    #define ROL(x, y) rotl(x, y) // Rotate left
    #define ROR(x, y) rotr(x, y) // Rotate right
    #define CFSHL(x, y) invalid_operation // Generate carry flag for (x<<y)
    #define CFSHR(x, y) invalid_operation // Generate carry flag for (x>>y)
    #define CFADD(x, y) invalid_operation // Generate carry flag for (x+y)
    #define CFSUB(x, y) invalid_operation // Generate carry flag for (x-y)
    #define OFADD(x, y) invalid_operation // Generate overflow flag for (x+y)
    #define OFSUB(x, y) invalid_operation // Generate overflow flag for (x-y)
    #endif
    
    // No definition for rcl/rcr because the carry flag is unknown
    #define RCL(x, y) invalid_operation // Rotate left thru carry
    #define RCR(x, y) invalid_operation // Rotate right thru carry
    #define MKCRCL(x, y) invalid_operation // Generate carry flag for a RCL
    #define MKCRCR(x, y) invalid_operation // Generate carry flag for a RCR
    #define SETP(x, y) invalid_operation // Generate parity flag for (x-y)
    
    // In the decompilation listing there are some objects declarared as _UNKNOWN
    // because we could not determine their types. Since the C compiler does not
    // accept void item declarations, we replace them by anything of our choice,
    // for example a char:
    
    #define _UNKNOWN char
    
    #ifdef _MSC_VER
    #define snprintf _snprintf
    #define vsnprintf _vsnprintf
    #endif
    

    原文链接:https://blog.csdn.net/u011478909/article/details/53540196

  • 相关阅读:
    关于垂直居中
    linux 前后台程序切换
    mac 下jetbrains IDE系列IDE主题
    mac 安装命令行开发者工具
    python 安装MySQLdb mysql_config not fount
    error: command 'cc' failed with exit status 1
    sqllite 入门
    jieba分词
    zookeeper 故障重连机制
    深入学习 celery
  • 原文地址:https://www.cnblogs.com/THRANDUil/p/15547713.html
Copyright © 2020-2023  润新知