• RNN姓氏分类:官方教程翻译


    NLP FROM SCRATCH: CLASSIFYING NAMES WITH A CHARACTER-LEVEL RNN

    原文来自于pytorch官网教程。

    文章实现了一个字母级别的基础RNN模型来分类单词。其中并没有用已经提炼过的pytorch中的RNN方法,以展示RNN模型是怎样工作的。

    这个模型将单词读成一个字母序列,每一步都会输出当前预测和隐藏层,隐藏层会传递给下一个字母,用最后一个结果可以对这个单词进行分类。

    数据为几千个来自18个国家的人名的姓氏。通过输入这些姓氏,我们的模型应当能够判断这是哪个国家的。

    $ python predict.py Hinton
    (-0.47) Scottish
    (-1.52) English
    (-3.57) Irish
    
    $ python predict.py Schmidhuber
    (-0.19) German
    (-2.48) Czech
    (-2.68) Dutch
    

    推荐阅读

    pytorch相关:

    RNN相关:

    准备数据

    数据下载 https://download.pytorch.org/tutorial/data.zip

    data/names目录下,有18个命名为[Language].txt的文件。每个文件里面都有很多名字,一个一行,大多数都已经转化成了我们看得懂的字母,但是仍然需要进一步规则化。

    最后我们想要的是一个dictionary,每个语言作为索引可以找到它所有的名字组成的list。({Language: [names...]}

    from __future__ import unicode_literals, print_function, division
    from io import open
    import glob
    import os
    
    def findFiles(path): return glob.glob(path)
    
    print(findFiles('data/names/*.txt'))
    
    import unicodedata
    import string
    
    all_letters = string.ascii_letters + " .,;'"
    n_letters = len(all_letters)
    
    # Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427
    def unicodeToAscii(s):
        return ''.join(
            c for c in unicodedata.normalize('NFD', s)
            if unicodedata.category(c) != 'Mn'
            and c in all_letters
        )
    
    print(unicodeToAscii('Ślusàrski'))
    
    # Build the category_lines dictionary, a list of names per language
    category_lines = {}
    all_categories = []
    
    # Read a file and split into lines
    def readLines(filename):
        lines = open(filename, encoding='utf-8').read().strip().split('
    ')
        return [unicodeToAscii(line) for line in lines]
    
    for filename in findFiles('data/names/*.txt'):
        category = os.path.splitext(os.path.basename(filename))[0]
        all_categories.append(category)
        lines = readLines(filename)
        category_lines[category] = lines
    
    n_categories = len(all_categories)
    

    输出:

    ['data/names/French.txt', 'data/names/Czech.txt', 'data/names/Dutch.txt', 'data/names/Polish.txt', 'data/names/Scottish.txt', 'data/names/Chinese.txt', 'data/names/English.txt', 'data/names/Italian.txt', 'data/names/Portuguese.txt', 'data/names/Japanese.txt', 'data/names/German.txt', 'data/names/Russian.txt', 'data/names/Korean.txt', 'data/names/Arabic.txt', 'data/names/Greek.txt', 'data/names/Vietnamese.txt', 'data/names/Spanish.txt', 'data/names/Irish.txt']
    Slusarski
    

    现在我们有category_lines作为字典,其中用语言名字可以找到对应语言文件中所有的单词。我们还需要all_categoriesn_categories后面用。

    将名字转化为张量

    现在我们已经组织了所有名称,我们需要将它们转换为张量以使用它们。

    在这里直接使用独热编码,一个字母张量为1 X n_letters,一个单词的维度大小就是line_length X 1 X n_letters

    额外的1维是因为PyTorch假定所有东西都是成批的-我们在这里只使用1的批处理大小。

    import torch
    
    # Find letter index from all_letters, e.g. "a" = 0
    def letterToIndex(letter):
        return all_letters.find(letter)
    
    # Just for demonstration, turn a letter into a <1 x n_letters> Tensor
    def letterToTensor(letter):
        tensor = torch.zeros(1, n_letters)
        tensor[0][letterToIndex(letter)] = 1
        return tensor
    
    # Turn a line into a <line_length x 1 x n_letters>,
    # or an array of one-hot letter vectors
    def lineToTensor(line):
        tensor = torch.zeros(len(line), 1, n_letters)
        for li, letter in enumerate(line):
            tensor[li][0][letterToIndex(letter)] = 1
        return tensor
    
    print(letterToTensor('J'))
    
    print(lineToTensor('Jones').size())
    

    输出:

    tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
             0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
             0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
             0., 0., 0.]])
    torch.Size([5, 1, 57])
    

    建立模型

    在进行自动微分之前,在Torch中创建一个递归神经网络需要在多个epoch中克隆网络层(layers)的参数,layers保留了隐藏状态和梯度,这些layers现在完全由张量图本身处理。这意味着您可以以非常“纯粹”的方式实现RNN,作为常规的前馈层。

    这个RNN模块(大部分是从PyTorch for Torch用户教程中复制的)只有2个线性层,它们在输入和隐藏状态下运行,输出之后是LogSoftmax层。

    注:我在实际操作中将模型有所更改,达到了相对更好一点的训练效果,下面的模型是官方的模型。我的模型在文末。

    import torch.nn as nn
    
    class RNN(nn.Module):
        def __init__(self, input_size, hidden_size, output_size):
            super(RNN, self).__init__()
    
            self.hidden_size = hidden_size
    
            self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
            self.i2o = nn.Linear(input_size + hidden_size, output_size)
            self.softmax = nn.LogSoftmax(dim=1)
    
        def forward(self, input, hidden):
            combined = torch.cat((input, hidden), 1)
            hidden = self.i2h(combined)
            output = self.i2o(combined)
            output = self.softmax(output)
            return output, hidden
    
        def initHidden(self):
            return torch.zeros(1, self.hidden_size)
    
    n_hidden = 128
    rnn = RNN(n_letters, n_hidden, n_categories)
    

    要运行此网络的步骤,我们需要传递输入(在本例中为当前字母的张量)和先前的隐藏状态(首先将其初始化为零)。我们将返回输出(每种语言的概率)和下一个隐藏状态(我们将其保留用于下一步)。

    input = letterToTensor('A')
    hidden =torch.zeros(1, n_hidden)
    
    output, next_hidden = rnn(input, hidden)
    

    为了提高效率,我们不想为每个步骤都创建一个新的Tensor,因此我们将使用lineToTensor代替 letterToTensor和使用slice。这可以通过预先计算一批张量来进一步优化。

    input = lineToTensor('Albert')
    hidden = torch.zeros(1, n_hidden)
    
    output, next_hidden = rnn(input[0], hidden)
    print(output)
    

    输出

    tensor([[-2.9504, -2.8402, -2.9195, -2.9136, -2.9799, -2.8207, -2.8258, -2.8399,
             -2.9098, -2.8815, -2.8313, -2.8628, -3.0440, -2.8689, -2.9391, -2.8381,
             -2.9202, -2.8717]], grad_fn=<LogSoftmaxBackward>)
    

    训练

    准备训练

    在开始训练之前,我们应该做一些辅助功能。首先是解释网络的输出,我们知道这是每个类别的可能性。我们可以Tensor.topk用来获取最高可能性的值:

    def categoryFromOutput(output):
        top_n, top_i = output.topk(1)
        category_i = top_i[0].item()
        return all_categories[category_i], category_i
    
    print(categoryFromOutput(output))
    

    输出:

    ('Chinese', 5)
    

    我们还将需要快速地获取一组随机训练数据:

    import random
    
    def randomChoice(l):
        return l[random.randint(0, len(l) - 1)]
    
    def randomTrainingExample():
        category = randomChoice(all_categories)
        line = randomChoice(category_lines[category])
        category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
        line_tensor = lineToTensor(line)
        return category, line, category_tensor, line_tensor
    
    for i in range(10):
        category, line, category_tensor, line_tensor = randomTrainingExample()
        print('category =', category, '/ line =', line)
    

    输出:

    category = Italian / line = Pastore
    category = Arabic / line = Toma
    category = Irish / line = Tracey
    category = Portuguese / line = Lobo
    category = Arabic / line = Sleiman
    category = Polish / line = Sokolsky
    category = English / line = Farr
    category = Polish / line = Winogrodzki
    category = Russian / line = Adoratsky
    category = Dutch / line = Robert
    

    训练模型

    现在,训练该网络所需要做的就是向它展示大量示例,进行预测,并告诉它是否错误。

    损失函数用nn.NLLLoss,因为RNN的最后一层是nn.LogSoftmax

    criterion = nn.NLLLoss()
    

    每个epoch中:

    • 创建输入和目标张量
    • 创建为零的初始隐藏状态
    • 输入每个字母
    • 记录下一个字母的隐藏状态
    • 比较最终输出与目标
    • 反向传播
    • 返回输出和损失
    learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
    
    def train(category_tensor, line_tensor):
        hidden = rnn.initHidden()
    
        rnn.zero_grad()
    
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
    
        loss = criterion(output, category_tensor)
        loss.backward()
    
        # Add parameters' gradients to their values, multiplied by learning rate
        for p in rnn.parameters():
            p.data.add_(-learning_rate, p.grad.data)
    
        return output, loss.item()
    

    现在,我们只需要运行大量samples。由于 train函数同时返回输出和损失,因此我们可以打印其猜测并跟踪绘制损失。由于有1000个示例,因此我们仅打印每个print_every示例,并对损失进行平均。

    import time
    import math
    
    n_iters = 100000
    print_every = 5000
    plot_every = 1000
    
    
    
    # Keep track of losses for plotting
    current_loss = 0
    all_losses = []
    
    def timeSince(since):
        now = time.time()
        s = now - since
        m = math.floor(s / 60)
        s -= m * 60
        return '%dm %ds' % (m, s)
    
    start = time.time()
    
    for iter in range(1, n_iters + 1):
        category, line, category_tensor, line_tensor = randomTrainingExample()
        output, loss = train(category_tensor, line_tensor)
        current_loss += loss
    
        # Print iter number, loss, name and guess
        if iter % print_every == 0:
            guess, guess_i = categoryFromOutput(output)
            correct = '✓' if guess == category else '✗ (%s)' % category
            print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
    
        # Add current loss avg to list of losses
        if iter % plot_every == 0:
            all_losses.append(current_loss / plot_every)
            current_loss = 0
    

    输出:

    5000 5% (0m 12s) 3.1806 Olguin / Irish ✗ (Spanish)
    10000 10% (0m 21s) 2.1254 Dubnov / Russian ✓
    15000 15% (0m 29s) 3.1001 Quirke / Polish ✗ (Irish)
    20000 20% (0m 38s) 0.9191 Jiang / Chinese ✓
    25000 25% (0m 46s) 2.3233 Marti / Italian ✗ (Spanish)
    30000 30% (0m 54s) nan Amari / Russian ✗ (Arabic)
    35000 35% (1m 3s) nan Gudojnik / Russian ✓
    40000 40% (1m 11s) nan Finn / Russian ✗ (Irish)
    45000 45% (1m 20s) nan Napoliello / Russian ✗ (Italian)
    50000 50% (1m 28s) nan Clark / Russian ✗ (Irish)
    55000 55% (1m 37s) nan Roijakker / Russian ✗ (Dutch)
    60000 60% (1m 46s) nan Kalb / Russian ✗ (Arabic)
    65000 65% (1m 54s) nan Hanania / Russian ✗ (Arabic)
    70000 70% (2m 3s) nan Theofilopoulos / Russian ✗ (Greek)
    75000 75% (2m 11s) nan Pakulski / Russian ✗ (Polish)
    80000 80% (2m 20s) nan Thistlethwaite / Russian ✗ (English)
    85000 85% (2m 29s) nan Shadid / Russian ✗ (Arabic)
    90000 90% (2m 37s) nan Finnegan / Russian ✗ (Irish)
    95000 95% (2m 46s) nan Brannon / Russian ✗ (Irish)
    100000 100% (2m 54s) nan Gomulka / Russian ✗ (Polish)
    

    绘制结果

    从中绘出历史损失all_losses显示网络学习情况:

    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker
    
    plt.figure()
    plt.plot(all_losses)
    

    评估结果

    # Keep track of correct guesses in a confusion matrix
    confusion = torch.zeros(n_categories, n_categories)
    n_confusion = 10000
    
    # Just return an output given a line
    def evaluate(line_tensor):
        hidden = rnn.initHidden()
    
        for i in range(line_tensor.size()[0]):
            output, hidden = rnn(line_tensor[i], hidden)
    
        return output
    
    # Go through a bunch of examples and record which are correctly guessed
    for i in range(n_confusion):
        category, line, category_tensor, line_tensor = randomTrainingExample()
        output = evaluate(line_tensor)
        guess, guess_i = categoryFromOutput(output)
        category_i = all_categories.index(category)
        confusion[category_i][guess_i] += 1
    
    # Normalize by dividing every row by its sum
    for i in range(n_categories):
        confusion[i] = confusion[i] / confusion[i].sum()
    
    # Set up plot
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(confusion.numpy())
    fig.colorbar(cax)
    
    # Set up axes
    ax.set_xticklabels([''] + all_categories, rotation=90)
    ax.set_yticklabels([''] + all_categories)
    
    # Force label at every tick
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
    
    # sphinx_gallery_thumbnail_number = 2
    plt.show()
    

    这个准确率表示方法有必要学一下,非常直观。我对我的模型也做了这样的评估。

    尝试nn.LSTM或者nn.GRU,再加上一些更复杂的网络层,可以达到更好的效果。

    Github项目

    官方

    我的

    一个人没有梦想,和咸鱼有什么区别!
  • 相关阅读:
    python高级函数六剑客
    测试工程师用到常用的git命令
    qing理解赋值,深浅拷贝的区别
    python设计模式之单例
    Python全栈之jQuery笔记
    畅谈python之单元测试框架-unittest
    浅析python之单元测试框架-unittest
    Python之日志处理(logging模块)
    Spring整理
    Spark学习笔记11面向对象编程
  • 原文地址:https://www.cnblogs.com/TABball/p/12726981.html
Copyright © 2020-2023  润新知