• Python数据分析与机器学习-NumPy_3


    import numpy as np
    a = np.arange(15).reshape(3,5)
    a
    
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14]])
    
    a.shape
    
    (3, 5)
    
    # the number of axes of the array
    a.ndim
    
    2
    
    a.dtype.name
    
    'int64'
    
    # the total number of elements of the array
    a.size
    
    15
    
    np.zeros((3,4))
    
    array([[0., 0., 0., 0.],
           [0., 0., 0., 0.],
           [0., 0., 0., 0.]])
    
    np.ones((2,3,4),dtype=np.int32)
    
    array([[[1, 1, 1, 1],
            [1, 1, 1, 1],
            [1, 1, 1, 1]],
    
           [[1, 1, 1, 1],
            [1, 1, 1, 1],
            [1, 1, 1, 1]]], dtype=int32)
    
    # To create sequences of numbers
    np.arange(10,30,5)
    
    array([10, 15, 20, 25])
    
    np.arange(0,2,0.3)
    
    array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
    
    np.arange(12).reshape(4,3)
    
    array([[ 0,  1,  2],
           [ 3,  4,  5],
           [ 6,  7,  8],
           [ 9, 10, 11]])
    
    np.random((2,3))
    
    ---------------------------------------------------------------------------
    
    TypeError                                 Traceback (most recent call last)
    
    <ipython-input-15-cf9c37e80811> in <module>
    ----> 1 np.random((2,3))
    
    
    TypeError: 'module' object is not callable
    
    np.random.random((2,3))
    
    array([[0.51537431, 0.73040071, 0.98759733],
           [0.55248528, 0.78998663, 0.59329055]])
    
    from numpy import pi
    np.linspace(0,2*pi,100)
    
    array([0.        , 0.06346652, 0.12693304, 0.19039955, 0.25386607,
           0.31733259, 0.38079911, 0.44426563, 0.50773215, 0.57119866,
           0.63466518, 0.6981317 , 0.76159822, 0.82506474, 0.88853126,
           0.95199777, 1.01546429, 1.07893081, 1.14239733, 1.20586385,
           1.26933037, 1.33279688, 1.3962634 , 1.45972992, 1.52319644,
           1.58666296, 1.65012947, 1.71359599, 1.77706251, 1.84052903,
           1.90399555, 1.96746207, 2.03092858, 2.0943951 , 2.15786162,
           2.22132814, 2.28479466, 2.34826118, 2.41172769, 2.47519421,
           2.53866073, 2.60212725, 2.66559377, 2.72906028, 2.7925268 ,
           2.85599332, 2.91945984, 2.98292636, 3.04639288, 3.10985939,
           3.17332591, 3.23679243, 3.30025895, 3.36372547, 3.42719199,
           3.4906585 , 3.55412502, 3.61759154, 3.68105806, 3.74452458,
           3.8079911 , 3.87145761, 3.93492413, 3.99839065, 4.06185717,
           4.12532369, 4.1887902 , 4.25225672, 4.31572324, 4.37918976,
           4.44265628, 4.5061228 , 4.56958931, 4.63305583, 4.69652235,
           4.75998887, 4.82345539, 4.88692191, 4.95038842, 5.01385494,
           5.07732146, 5.14078798, 5.2042545 , 5.26772102, 5.33118753,
           5.39465405, 5.45812057, 5.52158709, 5.58505361, 5.64852012,
           5.71198664, 5.77545316, 5.83891968, 5.9023862 , 5.96585272,
           6.02931923, 6.09278575, 6.15625227, 6.21971879, 6.28318531])
    
    np.sin(np.linspace(0,2*pi,100))
    
    array([ 0.00000000e+00,  6.34239197e-02,  1.26592454e-01,  1.89251244e-01,
            2.51147987e-01,  3.12033446e-01,  3.71662456e-01,  4.29794912e-01,
            4.86196736e-01,  5.40640817e-01,  5.92907929e-01,  6.42787610e-01,
            6.90079011e-01,  7.34591709e-01,  7.76146464e-01,  8.14575952e-01,
            8.49725430e-01,  8.81453363e-01,  9.09631995e-01,  9.34147860e-01,
            9.54902241e-01,  9.71811568e-01,  9.84807753e-01,  9.93838464e-01,
            9.98867339e-01,  9.99874128e-01,  9.96854776e-01,  9.89821442e-01,
            9.78802446e-01,  9.63842159e-01,  9.45000819e-01,  9.22354294e-01,
            8.95993774e-01,  8.66025404e-01,  8.32569855e-01,  7.95761841e-01,
            7.55749574e-01,  7.12694171e-01,  6.66769001e-01,  6.18158986e-01,
            5.67059864e-01,  5.13677392e-01,  4.58226522e-01,  4.00930535e-01,
            3.42020143e-01,  2.81732557e-01,  2.20310533e-01,  1.58001396e-01,
            9.50560433e-02,  3.17279335e-02, -3.17279335e-02, -9.50560433e-02,
           -1.58001396e-01, -2.20310533e-01, -2.81732557e-01, -3.42020143e-01,
           -4.00930535e-01, -4.58226522e-01, -5.13677392e-01, -5.67059864e-01,
           -6.18158986e-01, -6.66769001e-01, -7.12694171e-01, -7.55749574e-01,
           -7.95761841e-01, -8.32569855e-01, -8.66025404e-01, -8.95993774e-01,
           -9.22354294e-01, -9.45000819e-01, -9.63842159e-01, -9.78802446e-01,
           -9.89821442e-01, -9.96854776e-01, -9.99874128e-01, -9.98867339e-01,
           -9.93838464e-01, -9.84807753e-01, -9.71811568e-01, -9.54902241e-01,
           -9.34147860e-01, -9.09631995e-01, -8.81453363e-01, -8.49725430e-01,
           -8.14575952e-01, -7.76146464e-01, -7.34591709e-01, -6.90079011e-01,
           -6.42787610e-01, -5.92907929e-01, -5.40640817e-01, -4.86196736e-01,
           -4.29794912e-01, -3.71662456e-01, -3.12033446e-01, -2.51147987e-01,
           -1.89251244e-01, -1.26592454e-01, -6.34239197e-02, -2.44929360e-16])
    
    # The product operator * operates elementwise in NumPy arrays
    a = np.array([20,30,40,50])
    b = np.arange(4)
    print(a)
    print(b)
    c = a-b
    print(c)
    b**2
    print(b**2)
    print(a<35)
    
    [20 30 40 50]
    [0 1 2 3]
    [20 29 38 47]
    [0 1 4 9]
    [ True  True False False]
    
    # The matrix product can be performed using the dot function or method
    A = np.array([[1,1],
                  [0,1]])
    B = np.array([[2,0],
                 [3,4]])
    print(A)
    print("------")
    print(B)
    print("------")
    print(A*B)
    print("------")
    print(A.dot(B))
    print(np.dot(A,B))
    
    [[1 1]
     [0 1]]
    ------
    [[2 0]
     [3 4]]
    ------
    [[2 0]
     [0 4]]
    ------
    [[5 4]
     [3 4]]
    [[5 4]
     [3 4]]
  • 相关阅读:
    [转] 程序集和Dll的区别
    [转载] 节选自:2005年件我的第一次软件行业创业,烧掉30万、2年时间打水漂的惨痛教训总结
    [分享]屏幕取色工具
    LINQ学习笔记
    XP系统 mscorsvw.exe进程 占CPU资源 开机加载网络连接很慢 解决方法
    [原创] ASP.NET中事件执行顺序
    CHARINDEX, INSTR
    [转载]如何为自己的网站设置二级域名?
    [转载] System.Threading.Timer类的TimerCallback 委托
    [转载]ASP.NET 2.0 页面事件执行顺序
  • 原文地址:https://www.cnblogs.com/SweetZxl/p/11124174.html
Copyright © 2020-2023  润新知