• 格点统计


    题目大意

    第一象限(由于本人思维不算太敏捷,不懂第一象限的只能给你们链接自己看)中,位于反比例函数xy=k的下方(含边界)的格点的个数。

    思路详解

    这道题,我们先将第一象限画出来,牛逼的可以脑中构图。


    如上图,我画了一个k为4的第一象限图(无视边上的点)于是我们很成功的发现下表

    (1,1) (2,1) (3,1) (4,1)
    (2,1) (2,2)    
    (3,1)      
    (4,1)      

    求出来有什么用呢?不用急,一步步来。

    1. 我们先按上表打一个为O(n)的程序,一层层做。这样我们的时间复杂度就从O(n^2)--->O(n)。
    2. 再仔细观察,我们可以发现,如纵列[(1,1),(2,1),(3,1),(4,1)]与横列[(1,1),(2,1),(3,1),(4,1)]把个数相加,重复了左上角的(1,1)。所以我们可以一层层这么枚举求出规律。首先定义一个len。len=k div i-i+1。这么做便可以求出被前面计算过的数。判断一下,如果这个数大于1,说明除(i,i)点(如(1,1)(2,2)这样的在表中位于左上角的点)外还有数,便将它*2,便能一起求出表这一列的数。但注意,要不能将(i,i)点也乘2,这样会"wrong answer"。这样时间复杂度便可优化到O(trunc(sqrt(k)))。

    r
            i,j:longint;
            k,ans,len:int64;
    begin
            assign(input,'count.in'); reset(input);
            assign(output,'count.out'); rewrite(output);
            readln(k);
            for i:=1 to trunc(sqrt(k)) do
            begin
                    len:=k div i-(i-1);
                    if (len>1) then len:=(len-1)*2+1;
                    ans:=(ans+len) mod 998244353;
            end;
            writeln(ans mod 998244353);
    end.

    如果自己说什麽都做不到而什麽都不去做的话,那就更是什麽都做不到,什麽都不会改变,什麽都不会结束.
  • 相关阅读:
    《数据结构与算法之美》03——数组
    设计模式系列三-代理模式
    Docker系列2-image详解
    docker系列2-centos7下安装docker
    docker系列1-简介
    idea设置JDK无效
    java引用传递还是值传递问题解析
    MySQL优化系列4-全文索引
    MySQL优化系列3-存储引擎
    Redis深入解析系列:分布式锁详解
  • 原文地址:https://www.cnblogs.com/Sport-river/p/10390138.html
Copyright © 2020-2023  润新知