题目大意
求第一象限(由于本人思维不算太敏捷,不懂第一象限的只能给你们链接自己看)中,位于反比例函数xy=k的下方(含边界)的格点的个数。
思路详解
这道题,我们先将第一象限画出来,牛逼的可以脑中构图。
如上图,我画了一个k为4的第一象限图(无视边上的点)于是我们很成功的发现下表
(1,1) | (2,1) | (3,1) | (4,1) |
(2,1) | (2,2) | ||
(3,1) | |||
(4,1) |
求出来有什么用呢?不用急,一步步来。
- 我们先按上表打一个为O(n)的程序,一层层做。这样我们的时间复杂度就从O(n^2)--->O(n)。
- 再仔细观察,我们可以发现,如纵列[(1,1),(2,1),(3,1),(4,1)]与横列[(1,1),(2,1),(3,1),(4,1)]把个数相加,重复了左上角的(1,1)。所以我们可以一层层这么枚举求出规律。首先定义一个len。len=k div i-i+1。这么做便可以求出被前面计算过的数。判断一下,如果这个数大于1,说明除(i,i)点(如(1,1)(2,2)这样的在表中位于左上角的点)外还有数,便将它*2,便能一起求出表这一列的数。但注意,要不能将(i,i)点也乘2,这样会"wrong answer"。这样时间复杂度便可优化到O(trunc(sqrt(k)))。
r
i,j:longint;
k,ans,len:int64;
begin
assign(input,'count.in'); reset(input);
assign(output,'count.out'); rewrite(output);
readln(k);
for i:=1 to trunc(sqrt(k)) do
begin
len:=k div i-(i-1);
if (len>1) then len:=(len-1)*2+1;
ans:=(ans+len) mod 998244353;
end;
writeln(ans mod 998244353);
end.