• BZOJ.2000.[HNOI2010]stone取石头游戏(博弈)


    BZOJ
    洛谷

    低估这道神题了_(:з」∠)_
    MilkyWay好狠啊(小声)


    (Description)

    有一些数字,被分成若干双端队列(从两边都可以取)和最多两个栈(只能从某一边一个一个取)的形式。两人轮流取这些数字,每个人都想最大化自己取到的数字和,求最后两人各能取到多少。
    (nleq10^6)

    (Solution)

    对于最左边的栈,如果有(A_1geq A_2),那么先手取了(A_2),后手一定会取走(A_1)(如果赚,显然后手要取;如果不赚,先手可以取别的最后依旧让后手取走)。同样扩展到左边连续递减的一段,两人都是轮流取的(这样(i)为奇数时,后手取(A_{i-1})可能就不赚了)。
    最右边的栈同理。
    然后能发现,谁能取到最左和最右边的数只与数字总个数有关,如果一共奇数个,先手可以同时取走最左和最右,否则后手可以。(nb...感觉真要证会很复杂)
    那么我们就可以处理完左右递减的那一段了。剩下的等会再说。

    考虑双端队列,如果有(A_{i-1}leq A_igeq A_{i+1}),且先手取走(A_{i-1}),那么后手一定去取(A_i),先手一定会取走(A_{i+1}),所以收益差是固定的,为(A_i-A_{i-1}-A_{i+1})。这里的先手是指取(A_{i-1})的人。那么我们就可以将这三个数压成一个数,去求收益差。
    那么我们就可以将这种上凸的情况全合并掉,把序列变成只有递减的、递增的、下凸的三种情况,显然这三种一定是从大到小轮流选的。

    这样合并两个栈,因为左边递减的已经合并了,也没有上凸情况了,所以只剩下递增情况了。同样和双端队列那些放一起轮流选就行了。

    最后求出个差,知道总数就知道答案了。

    注意合并后的元素是可能出现(0)的,空位置要再开个数组判。


    //17916kb	368ms
    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #include <functional>
    #define gc() getchar()
    #define MAXIN 500000
    //#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
    typedef long long LL;
    const int N=1e6+5;
    
    LL sk[N],A[N];
    bool tag[N];
    char IN[MAXIN],*SS=IN,*TT=IN;
    
    inline int read()
    {
    	int now=0;register char c=gc();
    	for(;!isdigit(c);c=gc());
    	for(;isdigit(c);now=now*10+c-48,c=gc());
    	return now;
    }
    
    int main()
    {
    	int n=read(),top=0,sta=0;
    	LL sum=0,ans=0;
    	for(int i=1; i<=n; ++i)
    	{
    		sk[++top]=read();
    		tag[top]=(sk[top]>0), sta^=(sk[top]>0), sum+=sk[top];
    		while(top>2 && tag[top] && tag[top-1] && tag[top-2] && sk[top-1]>=std::max(sk[top-2],sk[top]))
    			sk[top-2]=sk[top]+sk[top-2]-sk[top-1], top-=2;
    	}
    	int l=1,r=top,cnt=0,v=sta?1:-1;
    	for(; tag[l]&&tag[l+1]&&sk[l]>=sk[l+1]; l+=2) ans+=v*(sk[l]-sk[l+1]);
    	for(; tag[r]&&tag[r-1]&&sk[r]>=sk[r-1]; r-=2) ans+=v*(sk[r]-sk[r-1]);
    	for(int i=l; i<=r; ++i) tag[i]&&(A[++cnt]=sk[i]);
    	std::sort(A+1,A+1+cnt,std::greater<LL>());
    	for(int i=1; i<=cnt; ++i) i&1?ans+=A[i]:ans-=A[i];
    	printf("%lld %lld
    ",sum+ans>>1,sum-ans>>1);
    
    	return 0;
    }
    
  • 相关阅读:
    工具使用:Oracle数据库表转换为Mysql
    使用Spring框架下的完成对事务的操作
    使用Spring框架下的JdbcTemplate 完成对数据库的增删改查操作
    我的历程,从心开始
    验证码
    加载效果
    mybatis逆向工程
    lo4j配置文件
    springmvc拦截器
    如何在标题栏加入图标
  • 原文地址:https://www.cnblogs.com/SovietPower/p/10566210.html
Copyright © 2020-2023  润新知