• CF1096E


    CF1096E [* easy]

    (n) 个随机变量,每个变量均为一个非负整数,第一个随机变量的值大于等于 (m),且随机变量的权值和为 (S)

    假设一个随机变量为最大值,那么说这个变量 win 了,如果有多个随机变量为最大值,那么就随机说一个变量 win 了。

    求第一个变量 win 的概率。答案对 (998244353) 取模。

    (n,Sle 5000,mle 100)

    Solution

    (n-1),然后枚举第一个变量的值 (x),其余元素的最大值和他权值相同的数量:

    [sum_{xge m} sum_i frac{1}{i+1}inom{n}{i}F(x-1,n-i,S-(i+1) imes x) ]

    其中 (F(a,b,c)) 表示使用 ([0,a]) 分配给 (b) 个人使权值和为 (c) 的方案数。((1+x+x^2+...+x^a)^b[x^c])

    即:

    [egin{aligned} &(frac{1-x^{a+1}}{1-x})^b[x^c] \&=frac{1}{(1-x)^b} imes (1-x^{a+1})^b[x^c] \&=frac{1}{(1-x)^b} imes sum_j inom{b}{j}x^{j(a+1)}(-1)^j[x^c] \&=sum_j inom{b}{j}(-1)^j imes inom{c-j(a+1)+b-1}{b-1} end{aligned}]

    不难发现我们的外层枚举量为 (mathcal O(nlog n))

    对于内层,单次计算的枚举量为 (min(frac{c}{a+1},b))

    所以总枚举量即:

    [sum_{xge m} sum_i^{ixle S} min(n,frac{S}{x}) ]

    其实也是 (sum frac{S^2}{x^2}) 大约是 (S^2)(sum_i frac{1}{i^2}=frac{pi^2}{6})

    分母的话大概是 (sum_{xge m} frac{1}{(1-x)^n}[x^{S-x}]=sum_{xge m}inom{n+S-x-1}{n-1})

  • 相关阅读:
    B端产品经理的价值
    APP场景流程分析
    大众点评
    降低成本
    抽象不变的,可变的
    优惠券统计报表
    JSON WEB TOKEN
    vue开发项目的坑-[Vue warn]: Do not use built-in or reserved HTML elements as component id: MenuItem
    redis分布式锁和消息队列
    thinkphp 面向切面编程-行为拓展
  • 原文地址:https://www.cnblogs.com/Soulist/p/13681654.html
Copyright © 2020-2023  润新知