背景
NOIP2014提高组第二题
描述
无向连通图G有n个点,n-1条边。点从1到n依次编号,编号为i的点的权值为Wi ,每条边的长度均为1。图上两点(u, v)的距离定义为u点到v点的最短距离。对于图G上的点对(u, v),若它们的距离为2,则它们之间会产生Wu×Wv的联合权值。
请问图G上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
输入格式
输入文件名为link.in。
第一行包含1个整数n。
接下来n-1行,每行包含2个用空格隔开的正整数u、v,表示编号为u和编号为v的点之间有边相连。
最后1行,包含n个正整数,每两个正整数之间用一个空格隔开,其中第i个整数表示图G上编号为i的点的权值为Wi。
输入样例:
5
1 2
2 3
3 4
4 5
1 5 2 3 10
输出格式
输出文件名为link.out。
输出共1行,包含2个整数,之间用一个空格隔开,依次为图G上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。
输出样例:
20 74
备注
对于30%的数据,1< n≤100;
对于60%的数据,1< n≤2000;
对于100%的数据,1< n≤200,000,0< Wi ≤10,000。
思路:
每个点找出最大权值和次大权值(如果有的话)相乘取max就是第一问的解。
对于每个点求一下周围点的权值和,ans=∑(sum[x]-w[v[i]])*w[v[i]]+ans; 取模的时候要注意负数的问题。
(其实开成long long什么事都没有了)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 400500
int xx,yy,n,v[N],next[N],first[N],w[N],tot=0,ans=0,ans1,ans2,maxx=0,sum[N];
void add(int x,int y){v[tot]=y;next[tot]=first[x];first[x]=tot++;}
void dfs(int x){
for(int i=first[x];~i;i=next[i]){
if(w[v[i]]>ans2){
if(w[v[i]]>ans1)
ans2=ans1,ans1=w[v[i]];
else ans2=w[v[i]];
}
sum[x]=(w[v[i]]+sum[x])%10007;
}
}
int main()
{
memset(first,-1,sizeof(first));
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d%d",&xx,&yy);
add(xx,yy);add(yy,xx);
}
for(int i=1;i<=n;i++)scanf("%d",&w[i]);
for(int i=1;i<=n;i++){
ans1=ans2=-50000;
dfs(i);
maxx=max(maxx,ans1*ans2);
}
for(int ii=1;ii<=n;ii++)
for(int i=first[ii];~i;i=next[i])
ans=((((sum[ii]-w[v[i]]+10007)%10007)*w[v[i]])%10007+ans)%10007;
printf("%d %d",maxx,ans);
}