• POJ 2891 Strange Way to Express Integers


    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1, a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ ik) to find the remainder ri. If a1, a2, …, ak are properly chosen, m can be determined, then the pairs (ai, ri) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers ai, ri (1 ≤ ik).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    Source

    线性同余方程组

    像普通同余方程那样求出解,然后将解的通式带入下一个方程,最后求出的

    有方程:a1*x-a2*y=b2-b1

    设a=a1/t,b=a2/t,c=(b2-b1)/t t=gcd(a,b)

    用exgcd得到a*x+b*y=c的解x0,通解x=x0+k*b,k为整数←目前这个有点理解不了

    带入a1*x+b1=n

    a1*b*k+a1*x0+b1=n

    所以b1=b1+a1*x0,a1=a1*b

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cmath>
     6 #define LL long long
     7 using namespace std;
     8 int n;
     9 LL gcd(LL a,LL b){
    10     return (!b)?a:gcd(b,a%b);
    11 }
    12 void exgcd(LL a,LL b,LL &x,LL &y){
    13     if(!b){
    14         x=1;y=0;return;
    15     }
    16     exgcd(b,a%b,x,y);
    17     LL t=x;
    18     x=y;
    19     y=t-a/b*y;
    20     return;
    21 }
    22 int main(){
    23     bool flag;
    24     LL a1,a2,b1,b2;
    25     while(scanf("%d",&n)!=EOF){
    26         int i,j;
    27         scanf("%I64d%I64d",&a1,&b1);
    28         LL a,b,c,x,y;
    29         flag=0;
    30         for(i=1;i<n;i++){
    31             scanf("%I64d%I64d",&a2,&b2);
    32             if(flag)continue;
    33             a=a1;
    34             b=a2;
    35             c=b2-b1;
    36             LL tmp=gcd(a,b);
    37             if(c%tmp!=0){//无解
    38                 printf("-1
    ");
    39                 flag=1;
    40             }
    41             else{
    42                 a/=tmp;b/=tmp;c/=tmp;
    43                 exgcd(a,b,x,y);
    44                 x=((c*x)%b+b)%b;//求出最小整数解 
    45                 b1=b1+a1*x;//带入 
    46                 a1=a1*b;// 
    47             }
    48         }
    49         if(!flag)printf("%I64d
    ",b1);
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    1025. 除数博弈
    剑指 Offer 12. 矩阵中的路径
    64. 最小路径和
    剑指 Offer 07. 重建二叉树-7月22日
    为人工智能、机器学习和深度学习做好准备的数据中心实践
    在云应用程序中加强隐私保护的9种方法
    迎接物联网时代 区块链大有可为
    Science 好文:强化学习之后,机器人学习瓶颈如何突破?
    学会这5招,让Linux排障更简单
    云游戏:5G时代的王牌应用
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/5660802.html
Copyright © 2020-2023  润新知