Elasticsearch优化 & filebeat配置文件优化 & logstash格式配置 & grok实践
编码转换问题(主要就是中文乱码)
(1)input 中的codec => plain 转码
codec => plain {
charset => "GB2312"
}
将GB2312 的文本编码,转为UTF-8 的编码
(2)也可以在filebeat中实现编码的转换(推荐)
filebeat.prospectors:
- input_type: log
paths:
- c:UsersAdministratorDesktopperformanceTrace.txt
encoding: GB2312
删除多余日志中的多余行
(1)logstash filter 中drop 删除
if ([message] =~ "^20.*- task request,.*,start time.*") { #用正则需删除的多余行
drop {}
}
(2)日志示例
2020-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59 #需删除的行
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
grok 处理多种日志不同的行(重点)
(1)日志示例:
2020-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
在logstash filter中grok 分别处理3行
match => {
"message" => "^20.*- task request,.*,start time:%{TIMESTAMP_ISO8601:RequestTime}"
}
match => {
"message" => "^-- Request String : {"UserName":"%{NUMBER:UserName:int}","Pwd":"(?<Pwd>.*)","DeviceType":%{NUMBER:DeviceType:int},"DeviceId":"(?<DeviceId>.*)","EquipmentNo":(?<EquipmentNo>.*),"SSID":(?<SSID>.*),"RegisterPhones":(?<RegisterPhones>.*),"AppKey":"(?<AppKey>.*)","Version":"(?<Version>.*)"} -- End.*"
}
match => {
"message" => "^-- Response String : {"ErrorCode":%{NUMBER:ErrorCode:int},"Success":(?<Success>[a-z]*),"ErrorMsg":(?<ErrorMsg>.*),"Result":(?<Result>.*),"WaitInterval":%{NUMBER:WaitInterval:int}} -- End.*"
}
... 等多行
(2)日志示例:
# 这是一条INFO 日志
2018-09-06 21:21:40.536 [490343b4207b39e5,490343b4207b39e5] [reactor-http-epoll-4] INFO c.w.w.p.i.config.SecurityFilter - [filter,75] - skipFlag:false uri:/report-server/daily/queryDailyReportChannel authorization:GbUzq6IElKkvRswreIHd8Xv/YMDd885jyINObc543vx2H+0lhdu0p5bOu0Vd9PT+jgxJpXHYyZiPgQmyio5Sfg==
# 这个一条ERROR日志
2018-09-06 21:21:15.863 [548809be071dd887,548809be071dd887] [reactor-http-epoll-4] ERROR c.w.w.c.e.WebExceptionHandler - [handle,34] - 系统异常:/report-server/game/queryPartnerGameReport
com.wbgg.wbcommon.core.base.exception.BusinessException: 您的账号未登录,请登录后再操作!
at com.wbgg.wbcommon.core.base.wrapper.Wrapper.check(Wrapper.java:155)
at com.wbgg.wbgateway.pc.infrastructure.config.SecurityFilter.filter(SecurityFilter.java:86)
at org.springframework.cloud.gateway.handler.FilteringWebHandler$GatewayFilterAdapter.filter(FilteringWebHandler.java:135)
at org.springframework.cloud.gateway.filter.OrderedGatewayFilter.filter(OrderedGatewayFilter.java:44)
at org.springframework.cloud.gateway.handler.FilteringWebHandler$DefaultGatewayFilterChain.lambda$filter$0(FilteringWebHandler.java:117)
at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:44)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.Mono.subscribe(Mono.java:3695)
at reactor.core.publisher.MonoIgnoreThen$ThenIgnoreMain.drain(MonoIgnoreThen.java:172)
at reactor.core.publisher.MonoIgnoreThen.subscribe(MonoIgnoreThen.java:56)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.innerNext(FluxConcatMap.java:275)
at reactor.core.publisher.FluxConcatMap$ConcatMapInner.onNext(FluxConcatMap.java:849)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxSwitchIfEmpty$SwitchIfEmptySubscriber.onNext(FluxSwitchIfEmpty.java:67)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)
at reactor.core.publisher.MonoFlatMap$FlatMapInner.onNext(MonoFlatMap.java:241)
at reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)
at reactor.core.publisher.MonoFlatMap$FlatMapInner.onSubscribe(MonoFlatMap.java:230)
at reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoFlatMap$FlatMapMain.onNext(MonoFlatMap.java:150)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxMap$MapSubscriber.onNext(FluxMap.java:114)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.MonoNext$NextSubscriber.onNext(MonoNext.java:76)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.innerNext(FluxConcatMap.java:275)
at reactor.core.publisher.FluxConcatMap$ConcatMapInner.onNext(FluxConcatMap.java:849)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxOnErrorResume$ResumeSubscriber.onNext(FluxOnErrorResume.java:73)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxPeek$PeekSubscriber.onNext(FluxPeek.java:192)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)
at reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.innerResult(MonoFilterWhen.java:193)
at reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onNext(MonoFilterWhen.java:260)
at reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onNext(MonoFilterWhen.java:228)
at reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)
at reactor.core.publisher.MonoFilterWhen$FilterWhenInner.onSubscribe(MonoFilterWhen.java:249)
at reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.Mono.subscribe(Mono.java:3695)
at reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.onNext(MonoFilterWhen.java:150)
at reactor.core.publisher.Operators$ScalarSubscription.request(Operators.java:2070)
at reactor.core.publisher.MonoFilterWhen$MonoFilterWhenMain.onSubscribe(MonoFilterWhen.java:103)
at reactor.core.publisher.MonoJust.subscribe(MonoJust.java:54)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoFilterWhen.subscribe(MonoFilterWhen.java:56)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoPeek.subscribe(MonoPeek.java:71)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.Mono.subscribe(Mono.java:3695)
at reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.drain(FluxConcatMap.java:442)
at reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onNext(FluxConcatMap.java:244)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxDematerialize$DematerializeSubscriber.onNext(FluxDematerialize.java:114)
at reactor.core.publisher.FluxDematerialize$DematerializeSubscriber.onNext(FluxDematerialize.java:42)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drainAsync(FluxFlattenIterable.java:395)
at reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drain(FluxFlattenIterable.java:638)
at reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.onNext(FluxFlattenIterable.java:242)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxPeekFuseable$PeekFuseableSubscriber.onNext(FluxPeekFuseable.java:204)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1505)
at reactor.core.publisher.MonoCollectList$MonoBufferAllSubscriber.onComplete(MonoCollectList.java:118)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)
at reactor.core.publisher.DrainUtils.postCompleteDrain(DrainUtils.java:131)
at reactor.core.publisher.DrainUtils.postComplete(DrainUtils.java:186)
at reactor.core.publisher.FluxMaterialize$MaterializeSubscriber.onComplete(FluxMaterialize.java:134)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)
at reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drainAsync(FluxFlattenIterable.java:325)
at reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.drain(FluxFlattenIterable.java:638)
at reactor.core.publisher.FluxFlattenIterable$FlattenIterableSubscriber.onComplete(FluxFlattenIterable.java:259)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)
at reactor.core.publisher.FluxMapFuseable$MapFuseableSubscriber.onComplete(FluxMapFuseable.java:144)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)
at reactor.core.publisher.Operators$MonoSubscriber.complete(Operators.java:1508)
at reactor.core.publisher.MonoCollectList$MonoBufferAllSubscriber.onComplete(MonoCollectList.java:118)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)
at reactor.core.publisher.FluxFlatMap$FlatMapMain.checkTerminated(FluxFlatMap.java:794)
at reactor.core.publisher.FluxFlatMap$FlatMapMain.drainLoop(FluxFlatMap.java:560)
at reactor.core.publisher.FluxFlatMap$FlatMapMain.drain(FluxFlatMap.java:540)
at reactor.core.publisher.FluxFlatMap$FlatMapMain.onComplete(FluxFlatMap.java:426)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onComplete(ScopePassingSpanSubscriber.java:112)
at reactor.core.publisher.FluxIterable$IterableSubscription.slowPath(FluxIterable.java:265)
at reactor.core.publisher.FluxIterable$IterableSubscription.request(FluxIterable.java:201)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.request(ScopePassingSpanSubscriber.java:79)
at reactor.core.publisher.FluxFlatMap$FlatMapMain.onSubscribe(FluxFlatMap.java:335)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onSubscribe(ScopePassingSpanSubscriber.java:71)
at reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:139)
at reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:63)
at reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)
at reactor.core.publisher.FluxFlatMap.subscribe(FluxFlatMap.java:97)
at reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)
at reactor.core.publisher.MonoCollectList.subscribe(MonoCollectList.java:59)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoMapFuseable.subscribe(MonoMapFuseable.java:59)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoFlattenIterable.subscribe(MonoFlattenIterable.java:101)
at reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)
at reactor.core.publisher.FluxMaterialize.subscribe(FluxMaterialize.java:40)
at reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)
at reactor.core.publisher.MonoCollectList.subscribe(MonoCollectList.java:59)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoPeekFuseable.subscribe(MonoPeekFuseable.java:74)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoFlattenIterable.subscribe(MonoFlattenIterable.java:101)
at reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)
at reactor.core.publisher.FluxDematerialize.subscribe(FluxDematerialize.java:39)
at reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)
at reactor.core.publisher.FluxDefer.subscribe(FluxDefer.java:54)
at reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)
at reactor.core.publisher.FluxConcatMap.subscribe(FluxConcatMap.java:121)
at reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)
at reactor.core.publisher.MonoNext.subscribe(MonoNext.java:40)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoMap.subscribe(MonoMap.java:55)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoSwitchIfEmpty.subscribe(MonoSwitchIfEmpty.java:44)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoMap.subscribe(MonoMap.java:55)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.Mono.subscribe(Mono.java:3695)
at reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.drain(FluxConcatMap.java:442)
at reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onNext(FluxConcatMap.java:244)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onNext(ScopePassingSpanSubscriber.java:96)
at reactor.core.publisher.FluxIterable$IterableSubscription.slowPath(FluxIterable.java:243)
at reactor.core.publisher.FluxIterable$IterableSubscription.request(FluxIterable.java:201)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.request(ScopePassingSpanSubscriber.java:79)
at reactor.core.publisher.FluxConcatMap$ConcatMapImmediate.onSubscribe(FluxConcatMap.java:229)
at org.springframework.cloud.sleuth.instrument.reactor.ScopePassingSpanSubscriber.onSubscribe(ScopePassingSpanSubscriber.java:71)
at reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:139)
at reactor.core.publisher.FluxIterable.subscribe(FluxIterable.java:63)
at reactor.core.publisher.FluxLiftFuseable.subscribe(FluxLiftFuseable.java:70)
at reactor.core.publisher.FluxConcatMap.subscribe(FluxConcatMap.java:121)
at reactor.core.publisher.FluxLift.subscribe(FluxLift.java:46)
at reactor.core.publisher.MonoNext.subscribe(MonoNext.java:40)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoSwitchIfEmpty.subscribe(MonoSwitchIfEmpty.java:44)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoFlatMap.subscribe(MonoFlatMap.java:60)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at org.springframework.cloud.sleuth.instrument.web.TraceWebFilter$MonoWebFilterTrace.subscribe(TraceWebFilter.java:180)
at reactor.core.publisher.MonoDefer.subscribe(MonoDefer.java:52)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.MonoPeekTerminal.subscribe(MonoPeekTerminal.java:61)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoOnErrorResume.subscribe(MonoOnErrorResume.java:44)
at reactor.core.publisher.MonoLift.subscribe(MonoLift.java:45)
at reactor.core.publisher.Mono.subscribe(Mono.java:3695)
at reactor.core.publisher.MonoIgnoreThen$ThenIgnoreMain.drain(MonoIgnoreThen.java:172)
at reactor.core.publisher.MonoIgnoreThen.subscribe(MonoIgnoreThen.java:56)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoPeekFuseable.subscribe(MonoPeekFuseable.java:70)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.core.publisher.MonoPeekTerminal.subscribe(MonoPeekTerminal.java:61)
at reactor.core.publisher.MonoLiftFuseable.subscribe(MonoLiftFuseable.java:55)
at reactor.netty.http.server.HttpServerHandle.onStateChange(HttpServerHandle.java:64)
at reactor.netty.tcp.TcpServerBind$ChildObserver.onStateChange(TcpServerBind.java:226)
at reactor.netty.http.server.HttpServerOperations.onInboundNext(HttpServerOperations.java:434)
at reactor.netty.channel.ChannelOperationsHandler.channelRead(ChannelOperationsHandler.java:141)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)
at reactor.netty.http.server.HttpTrafficHandler.channelRead(HttpTrafficHandler.java:160)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)
at io.netty.channel.CombinedChannelDuplexHandler$DelegatingChannelHandlerContext.fireChannelRead(CombinedChannelDuplexHandler.java:438)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:328)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:302)
at io.netty.channel.CombinedChannelDuplexHandler.channelRead(CombinedChannelDuplexHandler.java:253)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:352)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1422)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:374)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:360)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:931)
at io.netty.channel.epoll.AbstractEpollStreamChannel$EpollStreamUnsafe.epollInReady(AbstractEpollStreamChannel.java:799)
at io.netty.channel.epoll.EpollEventLoop.processReady(EpollEventLoop.java:433)
at io.netty.channel.epoll.EpollEventLoop.run(EpollEventLoop.java:330)
at io.netty.util.concurrent.SingleThreadEventExecutor$6.run(SingleThreadEventExecutor.java:1044)
at io.netty.util.internal.ThreadExecutorMap$2.run(ThreadExecutorMap.java:74)
at java.lang.Thread.run(Thread.java:748)
在logstash filter中grok 规则进行匹配处理
input {
kafka {
id => "test-kafka-input"
bootstrap_servers => ["192.168.0.250:9092"] # kafka地址
group_id => "logstash" # kafka group
topics => ["test", "filebeat"] # kafka topics
codec => json # 设定输入类型为json
}
}
filter {
# mutate {
# gsub => [ "message", "
", "" ] # 替换掉换行符
# }
grok {
match => ["message","%{TIMESTAMP_ISO8601:timestamp}s+%{SYSLOG5424SD:uid}s+%{SYSLOG5424SD:threadid}s+%{LOGLEVEL:loglevel}s+%{JAVACLASS:javaclass}s+.?s+%{SYSLOG5424SD}s+.?s+%{GREEDYDATA:message}"] # 配置正则表达式和标签匹配日志
overwrite => ["message"] # 将上面%{GREEDYDATA:message} 标签覆盖到message上
}
date {
match => [ "timestamp", "yyyy-MM-dd HH:mm:ss,SSS" ] # 配置timestamp 时间格式
target => "@timestamp" # 将上面grok正则匹配的标签timestamp 覆盖到默认date "@timestamp" 上面,以便kibana中看到打印的最新时间
}
# 下面这段是为了解决Elasticsearch 默认时间是0时区,不是东八区,所以默认显示时间比东八区少8个小时,这时我们通过ruby 进行时间格式的修改,增加8个小时,示例如下:
ruby {
code => "event.set('timestamp', event.get('@timestamp').time.localtime + 8*60*60)"
}
ruby {
code => "event.set('@timestamp',event.get('timestamp'))"
}
# 配置要删除的多余的一些字符串,通过mutate模块进行删除
mutate {
remove_field => ["timestamp","hostname","tags","stream","agent","ecs","input","[kubernetes][container][name]","[kubernetes][labels][pod-template-hash]","[kubernetes][pod][uid]","[kubernetes][replicaset]","@version","[log][offset]"]
}
json {
source => "@fields"
# 删除filebeat 自带的不需要的元数据
remove_field => [ "beat","@fields","fields","index_name","offset","source","message","time","tags"]
}
# json {
# source => "message"
# remove_field => [ "message" ]
# }
# multiline {
# pattern => "^d{4}-d{1,2}-d{1,2}sd{1,2}:d{1,2}:d{1,2}"
# negate => true
# what => "previous"
# }
}
output {
elasticsearch {
hosts => ["http://192.168.0.250:9200"]
user => logstash_admin
password => "YHkdypsPKqw5gaWKE"
index => "game-filebeat-%{+YYYY.MM.dd}"
}
#file {
# path => "/test/bak/test.txt"
#}
}
日志多行合并处理—multiline插件(重点)
(1)示例:
① 日志
2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End
② logstash grok 对合并后多行的处理(合并多行后续都一样,如下)
filter {
grok {
match => {
"message" => "^%{TIMESTAMP_ISO8601:InsertTime} .*- task request,.*,start time:%{TIMESTAMP_ISO8601:RequestTime}
-- Request String : {"UserName":"%{NUMBER:UserName:int}","Pwd":"(?<Pwd>.*)","DeviceType":%{NUMBER:DeviceType:int},"DeviceId":"(?<DeviceId>.*)","EquipmentNo":(?<EquipmentNo>.*),"SSID":(?<SSID>.*),"RegisterPhones":(?<RegisterPhones>.*),"AppKey":"(?<AppKey>.*)","Version":"(?<Version>.*)"} -- End
-- Response String : {"ErrorCode":%{NUMBER:ErrorCode:int},"Success":(?<Success>[a-z]*),"ErrorMsg":(?<ErrorMsg>.*),"Result":(?<Result>.*),"WaitInterval":%{NUMBER:WaitInterval:int}} -- End"
}
}
}
(2)在filebeat中使用multiline 插件(推荐)
① 介绍multiline
pattern:正则匹配从哪行合并
negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并
match:after/before(需自己理解)
after:匹配到pattern 部分后合并,注意:这种情况最后一行日志不会被匹配处理
before:匹配到pattern 部分前合并(推荐)
② 5.5版本之后(before为例)
filebeat.prospectors:
- input_type: log
paths:
- /root/performanceTrace*
fields:
type: zidonghualog
multiline.pattern: '.*"WaitInterval":.*-- End'
multiline.negate: true
multiline.match: before
③ 5.5版本之前(after为例)
filebeat.prospectors:
- input_type: log
paths:
- /root/performanceTrace*
input_type: log
multiline:
pattern: '^20.*'
negate: true
match: after
(3)在logstash input中使用multiline 插件(没有filebeat 时推荐)
① 介绍multiline
pattern:正则匹配从哪行合并
negate:true/false,匹配到pattern 部分开始合并,还是不配到的合并
what:previous/next(需自己理解)
previous:相当于filebeat 的after
next:相当于filebeat 的before
② 用法
input {
file {
path => ["/root/logs/log2"]
start_position => "beginning"
codec => multiline {
pattern => "^20.*"
negate => true
what => "previous"
}
}
}
(4)在logstash filter中使用multiline 插件(不推荐)
(a)不推荐的原因:
① filter设置multiline后,pipline worker会自动将为1
② 5.5 版本官方把multiline 去除了,要使用的话需下载,下载命令如下:
/usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline
(b)示例:
filter {
multiline {
pattern => "^20.*"
negate => true
what => "previous"
}
}
logstash filter 中的date使用
(1) 日志示例
2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
(2) date 使用
date {
match => ["InsertTime","YYYY-MM-dd HH:mm:ss "]
remove_field => "InsertTime"
}
注:
match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]
匹配这个字段,字段的格式为:日日/月月月/年年年年 时/分/秒 时区
也可以写为:match => ["timestamp","ISO8601"](推荐)
(3)date 介绍
就是将匹配日志中时间的key 替换为@timestamp 的时间,因为@timestamp 的时间是日志送到logstash 的时间,并不是日志中真正的时间。
6、对多类日志分类处理(重点)
① 在filebeat 的配置中添加type 分类
filebeat:
prospectors:
- paths:
- /mnt/data_total/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_total
- paths:
- /mnt/data_request/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_request
- paths:
- /mnt/data_report/WebApiDebugLog.txt*
fields:
type: WebApiDebugLog_report
② 在logstash filter中使用if,可进行对不同类进行不同处理
filter {
if [fields][type] == "WebApiDebugLog_request" { #对request 类日志
if ([message] =~ "^20.*- task report,.*,start time.*") { #删除report 行
drop {}
}
grok {
match => {"... ..."}
}
}
③ 在logstash output中使用if
if [fields][type] == "WebApiDebugLog_total" {
elasticsearch {
hosts => ["6.6.6.6:9200"]
index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}"
document_type => "WebApiDebugLog_total_logs"
}
对elk 整体性能的优化
性能分析
(1)服务器硬件Linux:1cpu 4GRAM
假设每条日志250 Byte
(2)分析
① logstash硬件Linux:1cpu 4GRAM
每秒500条日志
去掉ruby每秒660条日志
去掉grok后每秒1000条数据
② filebeat硬件Linux:1cpu 4GRAM
每秒2500-3500条数据
每天每台机器可处理:24h*60min*60sec*3000*250Byte=64,800,000,000Bytes,约64G
③ 瓶颈在logstash 从redis中取数据存入ES,开启一个logstash,每秒约处理6000条数据;开启两个logstash,每秒约处理10000条数据(cpu已基本跑满);
④ logstash的启动过程占用大量系统资源,因为脚本中要检查java、ruby以及其他环境变量,启动后资源占用会恢复到正常状态。
关于收集日志的选择:logstash/filter
(1)没有原则要求使用filebeat或logstash,两者作为shipper的功能是一样的,区别在于:
① logstash由于集成了众多插件,如grok,ruby,所以相比beat是重量级的;
② logstash启动后占用资源更多,如果硬件资源足够则无需考虑二者差异;
③ logstash基于JVM,支持跨平台;而beat使用golang编写,AIX不支持;
④ AIX 64bit平台上需要安装jdk(jre) 1.7 32bit,64bit的不支持;
⑤ filebeat可以直接输入到ES,但是系统中存在logstash直接输入到ES的情况,这将造成不同的索引类型造成检索复杂,最好统一输入到els 的源。
(2)总结
logstash/filter 总之各有千秋,但是,我推荐选择:在每个需要收集的日志服务器上配置filebeat,因为轻量级,用于收集日志;再统一输出给logstash,做对日志的处理;最后统一由logstash 输出给es。中间也开增加kafka消息队列进行缓存。
logstash的优化相关配置
(1)可以优化的参数,可根据自己的硬件进行优化配置
① pipeline 线程数,官方建议是等于CPU内核数
默认配置 ---> pipeline.workers: 2
可优化为 ---> pipeline.workers: CPU内核数(或几倍cpu内核数)
② 实际output 时的线程数
默认配置 ---> pipeline.output.workers: 1
可优化为 ---> pipeline.output.workers: 不超过pipeline 线程数
③ 每次发送的事件数
默认配置 ---> pipeline.batch.size: 125
可优化为 ---> pipeline.batch.size: 1000
④ 发送延时
默认配置 ---> pipeline.batch.delay: 5
可优化为 ---> pipeline.batch.size: 10
(2)总结
通过设置-w参数指定pipeline worker数量,也可直接修改配置文件logstash.yml。这会提高filter和output的线程数,如果需要的话,将其设置为cpu核心数的几倍是安全的,线程在I/O上是空闲的。
默认每个输出在一个pipeline worker线程上活动,可以在输出output 中设置workers设置,不要将该值设置大于pipeline worker数。
还可以设置输出的batch_size数,例如ES输出与batch size一致。
filter设置multiline后,pipline worker会自动将为1,如果使用filebeat,建议在beat中就使用multiline,如果使用logstash作为shipper,建议在input 中设置multiline,不要在filter中设置multiline。
(3)Logstash中的JVM配置文件
Logstash是一个基于Java开发的程序,需要运行在JVM中,可以通过配置jvm.options来针对JVM进行设定。比如内存的最大最小、垃圾清理机制等等。JVM的内存分配不能太大不能太小,太大会拖慢操作系统。太小导致无法启动。默认如下:
-Xms256m # 最小使用内存
-Xmx1g # 最大使用内存
引入Redis 的相关问题
(1)filebeat可以直接输入到logstash(indexer),但logstash没有存储功能,如果需要重启需要先停所有连入的beat,再停logstash,造成运维麻烦;另外如果logstash发生异常则会丢失数据;引入Redis作为数据缓冲池,当logstash异常停止后可以从Redis的客户端看到数据缓存在Redis中;
(2)Redis可以使用list(最长支持4,294,967,295条)或发布订阅存储模式;
(3)redis 做elk 缓冲队列的优化:
① bind 0.0.0.0 #不要监听本地端口
② requirepass ilinux.io #加密码,为了安全运行
③ 只做队列,没必要持久存储,把所有持久化功能关掉:快照(RDB文件)和追加式文件(AOF文件),性能更好
save "" 禁用快照
appendonly no 关闭RDB
④ 把内存的淘汰策略关掉,把内存空间最大
maxmemory 0 #maxmemory为0的时候表示我们对Redis的内存使用没有限制
elasticsearch 节点优化配置
(1)服务器硬件配置,OS 参数
(a) /etc/sysctl.conf 配置
vim /etc/sysctl.conf
vm.swappiness = 1 # ES 推荐将此参数设置为 1,大幅降低 swap 分区的大小,强制最大程度的使用内存,注意,这里不要设置为 0, 这会很可能会造成 OOM
net.core.somaxconn = 65535 # 定义了每个端口最大的监听队列的长度
vm.max_map_count= 262144 # 限制一个进程可以拥有的VMA(虚拟内存区域)的数量。虚拟内存区域是一个连续的虚拟地址空间区域。当VMA 的数量超过这个值,OOM
fs.file-max = 518144 # 设置 Linux 内核分配的文件句柄的最大数量
[root@elasticsearch]# sysctl -p 生效一下
(b)limits.conf 配置
vim /etc/security/limits.conf
elasticsearch soft nofile 65535
elasticsearch hard nofile 65535
elasticsearch soft memlock unlimited
elasticsearch hard memlock unlimited
(c)为了使以上参数永久生效,还要设置两个地方
vim /etc/pam.d/common-session-noninteractive
vim /etc/pam.d/common-session
添加如下属性:
session required pam_limits.so
可能需重启后生效
(2)elasticsearch 中的JVM配置文件
-Xms2g
-Xmx2g
① 将最小堆大小(Xms)和最大堆大小(Xmx)设置为彼此相等。
② Elasticsearch可用的堆越多,可用于缓存的内存就越多。但请注意,太多的堆可能会使您长时间垃圾收集暂停。
③ 设置Xmx为不超过物理RAM的50%,以确保有足够的物理内存留给内核文件系统缓存。
④ 不要设置Xmx为JVM用于压缩对象指针的临界值以上;确切的截止值有所不同,但接近32 GB。不要超过32G,如果空间大,多跑几个实例,不要让一个实例太大内存
(3)elasticsearch 配置文件优化参数
① vim elasticsearch.yml
bootstrap.memory_lock: true #锁住内存,不使用swap
#缓存、线程等优化如下
bootstrap.mlockall: true
transport.tcp.compress: true
indices.fielddata.cache.size: 40%
indices.cache.filter.size: 30%
indices.cache.filter.terms.size: 1024mb
threadpool:
search:
type: cached
size: 100
queue_size: 2000
② 设置环境变量
vim /etc/profile.d/elasticsearch.sh export ES_HEAP_SIZE=2g #Heap Size不超过物理内存的一半,且小于32G
(4)集群的优化(我未使用集群)
① ES是分布式存储,当设置同样的cluster.name后会自动发现并加入集群;
② 集群会自动选举一个master,当master宕机后重新选举;
③ 为防止"脑裂",集群中个数最好为奇数个
④ 为有效管理节点,可关闭广播 discovery.zen.ping.multicast.enabled: false,并设置单播节点组discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]
性能的检查
(1)检查输入和输出的性能
Logstash和其连接的服务运行速度一致,它可以和输入、输出的速度一样快。
(2)检查系统参数
① CPU
注意CPU是否过载。在Linux/Unix系统中可以使用top -H查看进程参数以及总计。
如果CPU使用过高,直接跳到检查JVM堆的章节并检查Logstash worker设置。
② Memory
注意Logstash是运行在Java虚拟机中的,所以它只会用到你分配给它的最大内存。
检查其他应用使用大量内存的情况,这将造成Logstash使用硬盘swap,这种情况会在应用占用内存超出物理内存范围时。
③ I/O 监控磁盘I/O检查磁盘饱和度
使用Logstash plugin(例如使用文件输出)磁盘会发生饱和。
当发生大量错误,Logstash生成大量错误日志时磁盘也会发生饱和。
在Linux中,可使用iostat,dstat或者其他命令监控磁盘I/O
④ 监控网络I/O
当使用大量网络操作的input、output时,会导致网络饱和。
在Linux中可使用dstat或iftop监控网络情况。
(3)检查JVM heap
heap设置太小会导致CPU使用率过高,这是因为JVM的垃圾回收机制导致的。
一个快速检查该设置的方法是将heap设置为两倍大小然后检测性能改进。不要将heap设置超过物理内存大小,保留至少1G内存给操作系统和其他进程。
你可以使用类似jmap命令行或VisualVM更加精确的计算JVM heap