题意:
分粮食我就当成涂色了。有n个点的一棵树,在a到b的路上都涂上c颜色,颜色可重复叠加,问最后每一个点的最大颜色数量的颜色类型。
思路:
首先这题的输出是每一个点最后的情况,考虑离线做法。简化版问题:在一条线段上涂色,问每个点的最后的情况,假设在[a, b]区间涂色,那么在开始的位置a标记开始涂色,在结束的位置标记结束涂色,一棵动态的颜色树,维护当前颜色数量最大的数量。那么这题也可以考虑这么做,先对树进行树链剖分,然后按照剖分顺序dfn来遍历,提前读入所有操作,在涂色的两端标记,后面操作和简化版一样了。
#include <bits/stdc++.h> const int N = 1e5 + 5; std::vector<int> edges[N]; int n, m; //颜色树 #define lson l, mid, o << 1 #define rson mid + 1, r, o << 1 | 1 int mx[N<<2]; void push_up(int o) { mx[o] = std::max (mx[o<<1], mx[o<<1|1]); } void build(int l, int r, int o) { mx[o] = 0; if (l == r) return ; int mid = l + r >> 1; build (lson); build (rson); } void updata(int p, int c, int l, int r, int o) { if (l == r) { mx[o] += c; return ; } int mid = l + r >> 1; if (p <= mid) updata (p, c, lson); else updata (p, c, rson); push_up (o); } int query(int l, int r, int o) { if (l == r) return l; int mid = l + r >> 1; if (mx[o<<1] == mx[o]) return query (lson); else return query (rson); } int sz[N], fa[N], dfn[N], belong[N]; int idx[N]; int tim; void DFS2(int u, int chain) { dfn[u] = ++tim; idx[tim] = u; belong[u] = chain; int k = 0; for (auto v: edges[u]) { if (v == fa[u]) continue; if (sz[v] > sz[k]) k = v; } if (k) DFS2 (k, chain); for (auto v: edges[u]) { if (v == fa[u] || v == k) continue; DFS2 (v, v); } } void DFS(int u, int pa) { sz[u] = 1; fa[u] = pa; for (auto v: edges[u]) { if (v == pa) continue; DFS (v, u); sz[u] += sz[v]; } } std::vector<int> add[N], sub[N]; int ans[N]; void mark(int a, int b, int c) { int p = belong[a], q = belong[b]; while (p != q) { if (dfn[p] < dfn[q]) { std::swap (p, q); std::swap (a, b); } add[dfn[p]].push_back (c); sub[dfn[a]+1].push_back (c); //son[a] a = fa[p]; p = belong[a]; } if (dfn[a] < dfn[b]) std::swap (a, b); add[dfn[b]].push_back (c); sub[dfn[a]+1].push_back (c); } void prepare() { sz[0] = 0; DFS (1, 0); tim = 0; DFS2 (1, 1); } int main() { while (scanf ("%d%d", &n, &m) == 2 && n + m) { for (int i=1; i<=n; ++i) { edges[i].clear (); add[i].clear (); sub[i].clear (); } for (int i=1; i<n; ++i) { int u, v; scanf ("%d%d", &u, &v); edges[u].push_back (v); edges[v].push_back (u); } prepare (); int maxc = 1; for (int i=1; i<=m; ++i) { int a, b, c; scanf ("%d%d%d", &a, &b, &c); mark (a, b, c); maxc = std::max (maxc, c); } build (1, maxc, 1); //dfn for (int i=1; i<=n; ++i) { for (int j=0; j<add[i].size (); ++j) { updata (add[i][j], 1, 1, maxc, 1); } for (int j=0; j<sub[i].size (); ++j) { updata (sub[i][j], -1, 1, maxc, 1); } ans[idx[i]] = mx[1] ? query (1, maxc, 1) : 0; } for (int i=1; i<=n; ++i) { printf ("%d ", ans[i]); } } return 0; }