• 树链剖分+线段树 CF 593D Happy Tree Party(快乐树聚会)


    题目链接

    题意:

      有n个点的一棵树,两种操作:

      1. a到b的路径上,给一个y,对于路径上每一条边,进行操作,问最后的y;

      2. 修改某个条边p的值为c

    思路:

      链上操作的问题,想树链剖分和LCT,对于第一种操作,因为是向下取整,考虑y除以路径上所有边乘积,即;对于第二种操作,就是线段树上的单点更新。因为给的是边的序号,首先每个id能知道对应的边值(ide[])和连接的点(idv[])。还有乘法溢出的处理,写成函数方便多了。

    另外:

      1. 用dfn来替换dep完全没有问题,那以后就用dfn吧。2. 第二次DFS,要先去重儿子的路,这样dfn[son[u]]=dfn[u]+1,son数组也省了。3. 代码debug水平有待提升。4. 树的建图用vector就行了,不需要邻接表(n-1条边)。

    #include <bits/stdc++.h>
    
    typedef long long ll;
    const int N = 2e5 + 5;
    const ll INF = 2e18;
    
    std::vector<std::pair<int, int> > edges[N];
    int n, m;
    
    int dfn[N], fa[N], son[N], sz[N], belong[N];
    ll ide[N];
    int idv[N];
    int tim;
    
    inline ll mul(ll a, ll b) {
        if (a != 0 && b > INF / a) return INF;
        return a * b;
    }
    
    void DFS2(int u, int chain) {
        dfn[u] = ++tim;
        belong[u] = chain;
        if (son[u] != 0) {
            DFS2 (son[u], chain);
        }
        for (auto e: edges[u]) {
            int v = e.first;
            if (v == fa[u] || v == son[u]) continue;
            DFS2 (v, v);
        }
    }
    
    void DFS1(int u, int pa) {
        sz[u] = 1;
        fa[u] = pa;
        for (auto e: edges[u]) {
            int v = e.first, id = e.second;
            if (v == pa) continue;
            idv[id] = v;
            DFS1 (v, u);
            if (sz[v] > sz[son[u]]) son[u] = v;
            sz[u] += sz[v];
        }
    }
    
    #define lson l, mid, o << 1
    #define rson mid + 1, r, o << 1 | 1
    
    ll val[N<<2];
    
    void push_up(int o) {
        val[o] = mul (val[o<<1], val[o<<1|1]);
    }
    
    void tree_updata(int p, ll c, int l, int r, int o) {
        if (l == r) {
            val[o] = c;
            return ;
        }
        int mid = l + r >> 1;
        if (p <= mid) tree_updata (p, c, lson);
        else tree_updata (p, c, rson);
        push_up (o);
    }
    
    ll tree_query(int ql, int qr, int l, int r, int o) {
        if (ql <= l && r <= qr) {
            return val[o];
        }
        int mid = l + r >> 1;
        ll ret = 1;
        if (ql <= mid) ret = mul (ret, tree_query (ql, qr, lson));
        if (qr > mid) ret = mul (ret, tree_query (ql, qr, rson));
        return ret;
    }
    
    ll query(int a, int b) {
        ll ret = 1;
        int p = belong[a], q = belong[b];
        while (p != q) {
            if (dfn[p] < dfn[q]) {
                std::swap (p, q);
                std::swap (a, b);
            }
            ret = mul (ret, tree_query (dfn[p], dfn[a], 1, n, 1));
            a = fa[p];
            p = belong[a];
        }
        if (dfn[a] < dfn[b]) std::swap (a, b);
        if (a != b) {
            ret = mul (ret, tree_query (dfn[son[b]], dfn[a], 1, n, 1));
        }
        return ret;
    }
    
    void modify(int id, ll c) {
        tree_updata (dfn[idv[id]], c, 1, n, 1);
    }
    
    void prepare() {
        DFS1 (1, 0);
        tim = 0;
        DFS2 (1, 1);
        for (int i=1; i<n; ++i) {
            tree_updata (dfn[idv[i]], ide[i], 1, n, 1);
        }
    }
    
    int main() {
        scanf ("%d%d", &n, &m);
        for (int i=1; i<n; ++i) {
            int u, v;
            ll w;
            scanf ("%d%d%I64d", &u, &v, &w);
            ide[i] = w;
            edges[u].push_back ({v, i});
            edges[v].push_back ({u, i});
        }
        
        prepare ();
    
        for (int i=0; i<m; ++i) {
            int t, a, b;
            ll c;
            scanf ("%d%d", &t, &a);
            if (t == 1) {
                scanf ("%d%I64d", &b, &c);
                printf ("%I64d
    ", c / query (a, b));
            } else {
                scanf ("%I64d", &c);
                modify (a, c);
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    TCP首部
    IP
    ARP
    QYT教主TCPIP2017 TCP部分 视频笔记
    卷一第二十二章:UDP原理
    卷一第二十一章:TCP原理
    卷一第二十章:IPV6基础
    卷一十九章:DHCP (不涉及工作,暂停)
    目录
    Educational Codeforces Round 90 (Rated for Div. 2)
  • 原文地址:https://www.cnblogs.com/Running-Time/p/5679948.html
Copyright © 2020-2023  润新知