题意:
有n个点的一棵树,两种操作:
1. a到b的路径上,给一个y,对于路径上每一条边,进行操作,问最后的y;
2. 修改某个条边p的值为c
思路:
链上操作的问题,想树链剖分和LCT,对于第一种操作,因为是向下取整,考虑y除以路径上所有边乘积,即;对于第二种操作,就是线段树上的单点更新。因为给的是边的序号,首先每个id能知道对应的边值(ide[])和连接的点(idv[])。还有乘法溢出的处理,写成函数方便多了。
另外:
1. 用dfn来替换dep完全没有问题,那以后就用dfn吧。2. 第二次DFS,要先去重儿子的路,这样dfn[son[u]]=dfn[u]+1,son数组也省了。3. 代码debug水平有待提升。4. 树的建图用vector就行了,不需要邻接表(n-1条边)。
#include <bits/stdc++.h> typedef long long ll; const int N = 2e5 + 5; const ll INF = 2e18; std::vector<std::pair<int, int> > edges[N]; int n, m; int dfn[N], fa[N], son[N], sz[N], belong[N]; ll ide[N]; int idv[N]; int tim; inline ll mul(ll a, ll b) { if (a != 0 && b > INF / a) return INF; return a * b; } void DFS2(int u, int chain) { dfn[u] = ++tim; belong[u] = chain; if (son[u] != 0) { DFS2 (son[u], chain); } for (auto e: edges[u]) { int v = e.first; if (v == fa[u] || v == son[u]) continue; DFS2 (v, v); } } void DFS1(int u, int pa) { sz[u] = 1; fa[u] = pa; for (auto e: edges[u]) { int v = e.first, id = e.second; if (v == pa) continue; idv[id] = v; DFS1 (v, u); if (sz[v] > sz[son[u]]) son[u] = v; sz[u] += sz[v]; } } #define lson l, mid, o << 1 #define rson mid + 1, r, o << 1 | 1 ll val[N<<2]; void push_up(int o) { val[o] = mul (val[o<<1], val[o<<1|1]); } void tree_updata(int p, ll c, int l, int r, int o) { if (l == r) { val[o] = c; return ; } int mid = l + r >> 1; if (p <= mid) tree_updata (p, c, lson); else tree_updata (p, c, rson); push_up (o); } ll tree_query(int ql, int qr, int l, int r, int o) { if (ql <= l && r <= qr) { return val[o]; } int mid = l + r >> 1; ll ret = 1; if (ql <= mid) ret = mul (ret, tree_query (ql, qr, lson)); if (qr > mid) ret = mul (ret, tree_query (ql, qr, rson)); return ret; } ll query(int a, int b) { ll ret = 1; int p = belong[a], q = belong[b]; while (p != q) { if (dfn[p] < dfn[q]) { std::swap (p, q); std::swap (a, b); } ret = mul (ret, tree_query (dfn[p], dfn[a], 1, n, 1)); a = fa[p]; p = belong[a]; } if (dfn[a] < dfn[b]) std::swap (a, b); if (a != b) { ret = mul (ret, tree_query (dfn[son[b]], dfn[a], 1, n, 1)); } return ret; } void modify(int id, ll c) { tree_updata (dfn[idv[id]], c, 1, n, 1); } void prepare() { DFS1 (1, 0); tim = 0; DFS2 (1, 1); for (int i=1; i<n; ++i) { tree_updata (dfn[idv[i]], ide[i], 1, n, 1); } } int main() { scanf ("%d%d", &n, &m); for (int i=1; i<n; ++i) { int u, v; ll w; scanf ("%d%d%I64d", &u, &v, &w); ide[i] = w; edges[u].push_back ({v, i}); edges[v].push_back ({u, i}); } prepare (); for (int i=0; i<m; ++i) { int t, a, b; ll c; scanf ("%d%d", &t, &a); if (t == 1) { scanf ("%d%I64d", &b, &c); printf ("%I64d ", c / query (a, b)); } else { scanf ("%I64d", &c); modify (a, c); } } return 0; }