链接:https://ac.nowcoder.com/acm/contest/881/E
题目描述
Bobo has a string of length 2(n + m) which consists of characters `A` and `B`. The string also has a fascinating property: it can be decomposed into (n + m) subsequences of length 2, and among the (n + m) subsequences n of them are `AB` while other m of them are `BA`.
Given n and m, find the number of possible strings modulo (109+7)(109+7).
Given n and m, find the number of possible strings modulo (109+7)(109+7).
输入描述:
The input consists of several test cases and is terminated by end-of-file.
Each test case contains two integers n and m.
* 0≤n,m≤1030≤n,m≤103
* There are at most 2019 test cases, and at most 20 of them has max{n,m}>50max{n,m}>50.
输出描述:
For each test case, print an integer which denotes the result.
示例1
输出
复制13 436240410 1
思路:一开始讨论,想的是个找规律(虽然我读不懂题,也猜不对)。后来看了题解,才知道是个dp。
是酱紫的,题目说有N个AB,M个BA,那你就要注意到(A的个数)=(B的个数),尝试在A或B后面加A、B,但是这样很麻烦,所以就直接在A后面加AB,在B后面加BA。其中:DP的时候(A的个数 )<=(n+B的个数),(B的个数 )<=(m+A的个数)。首先你要选取A在开头或是B在开头,然后选他们后面跟了什么(A后面尝试加AB,试试有多少种可能)(B后面尝试加BA,试试有多少种可能),然后把两者相加,就是答案。
*我队友:“来自那啥的肯定”
#include <cstdio> #include <iostream> #include <string> #include <cstring> #include <cmath> #include <algorithm> #include <queue> #include <vector> #include <map> using namespace std; #define ll long long int mod = 1e9+7; int dp[5000+8][5000+8]; int main() { int n, m; while(~scanf("%d%d", &n, &m)) { for(int i = 0; i <= n+m; i++) for(int j = 0; j <= n+m; j++) dp[i][j] = 0; dp[0][0] = 1; for(int i = 0; i <= n+m; i++)//A的个数 { for(int j = 0; j <= m+n; j++)//B的个数 { int cA = i;//尝试插入A int needAB = n-cA;//A后面连接多少个AB if(needAB>n+m-j)continue; else dp[i+1][j] = (dp[i+1][j]+dp[i][j])%mod; int cB = j;//尝试插入B int needBA = m-cB;//B后面连接多少个BA if(needBA>n+m-i)continue; else dp[i][j+1] = (dp[i][j+1]+dp[i][j])%mod; } } printf("%d ", dp[n+m][n+m]); } return 0; }