You are given an array a1, a2, ..., an consisting of n integers, and an integer k. You have to split the array into exactly k non-empty subsegments. You'll then compute the minimum integer on each subsegment, and take the maximum integer over the k obtained minimums. What is the maximum possible integer you can get?
Definitions of subsegment and array splitting are given in notes.
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 105) — the size of the array a and the number of subsegments you have to split the array to.
The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109).
Print single integer — the maximum possible integer you can get if you split the array into k non-empty subsegments and take maximum of minimums on the subsegments.
5 2
1 2 3 4 5
5
5 1
-4 -5 -3 -2 -1
-5
A subsegment [l, r] (l ≤ r) of array a is the sequence al, al + 1, ..., ar.
Splitting of array a of n elements into k subsegments [l1, r1], [l2, r2], ..., [lk, rk] (l1 = 1, rk = n, li = ri - 1 + 1 for all i > 1) is ksequences (al1, ..., ar1), ..., (alk, ..., ark).
In the first example you should split the array into subsegments [1, 4] and [5, 5] that results in sequences (1, 2, 3, 4) and (5). The minimums are min(1, 2, 3, 4) = 1 and min(5) = 5. The resulting maximum is max(1, 5) = 5. It is obvious that you can't reach greater result.
In the second example the only option you have is to split the array into one subsegment [1, 5], that results in one sequence( - 4, - 5, - 3, - 2, - 1). The only minimum is min( - 4, - 5, - 3, - 2, - 1) = - 5. The resulting maximum is - 5.
【题意】:最大化数组分割为k个区间里的最小值。
【分析】:观察,发现最大化的值和k有关。
【代码】:
#include<bits/stdc++.h> using namespace std; int n,k; const int maxn = 1e5+10; int a[maxn]; #define inf 0x3f3f3f3f int main() { int mm,ma; memset(a,0,sizeof(a)); while(cin>>n>>k) { mm=inf; ma=-inf; for(int i=0;i<n;i++) { scanf("%d",&a[i]); mm=min(mm,a[i]); ma=max(ma,a[i]); } if(k==1) { cout<<mm<<endl; return 0; } if(k>2)//分割大于2时,最大化策略为总把最大值划为单独,就可以最大化结果刚好为最大值 { cout<<ma<<endl; return 0; } if(k==2)//分割为2个区间时,想要最大化,策略1 5 9 7 2/9 5 1 7 8可以试试,无论在哪里隔板,肯定符合两端的最大值。 { cout<<max(a[0],a[n-1])<<endl; } } return 0; }