• Educational Codeforces Round 93 (Rated for Div. 2)


    Educational Codeforces Round 93 (Rated for Div. 2)

    A. Bad Triangle

    input

    3
    7
    4 6 11 11 15 18 20
    4
    10 10 10 11
    3
    1 1 1000000000
    

    output

    2 3 6
    -1
    1 2 3
    

    Note

    In the first test case it is impossible with sides (6, 11 and 18). Note, that this is not the only correct answer.

    In the second test case you always can construct a non-degenerate triangle.

    题意:

    在非递减序列中找坏三角形。

    思路:

    由于是非递减的序列,直接特判(1,2,n, or, 1,n-1,n)

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int maxn = 1e5;
    ll a[maxn];
    bool check(ll x, ll y, ll z) {
    	if (x + y <= z || x + z <= y || y + z <= x)
    		return false;
    	return true;
    }
    void solve() {
    	int n; cin >> n;
    	bool flag = false;
    	for (int i = 1; i <= n; ++i)cin >> a[i];
    	if (!check(a[1], a[2], a[n])) {
    		cout << 1 << " " << 2 << " " << n << endl;
    	}
    	else if (!check(a[1], a[n - 1], a[n]))
    		cout << 1 << " " << n - 1 << " " << n << endl;
    	else cout << "-1" << endl;
    }
    int main() {
    	//freopen("in.txt", "r", stdin);
    	int t; cin >> t;
    	while (t--)solve();
    }
    

    B. Substring Removal Game

    题意:

    Alice 和 Bob 又在玩游戏了,给出一个0,1构成的字符串,问在每个人都想得到最多分的情况下,Alice能得多少分(删去1的个数 = 所得分数)

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int maxn = 1e5;
    ll a[maxn];
    bool check(ll x, ll y, ll z) {
    	if (x + y <= z || x + z <= y || y + z <= x)
    		return false;
    	return true;
    }
    void solve() {
    	string s;cin >> s;
    	vector<int>q;
    	int cnt = 0;
    	for (int i = 0; i < s.length(); ++i) {
    		if (s[i] == '1')cnt++;
    		else {
    			if (cnt == 0)continue;
    			q.push_back(cnt);
    			cnt = 0;
    		}
    	}
    	q.push_back(cnt);
    	cnt = 0;
    	sort(q.begin(), q.end());
    	for (int i = q.size() - 1; i >= 0; i -= 2)
    		cnt += q[i];
    	cout << cnt << endl;
    }
    int main() {
    	//freopen("in.txt", "r", stdin);
    	int t; cin >> t;
    	while (t--)solve();
    }
    

    C. Good Subarrays

    题意:

    给定一个(n)个元素的序列a,求满足(∑_{i=l}^ra_i=r−l+1)的区间个数.

    #include<bits/stdc++.h>
    using namespace std;int T,n;
    string s;map<int,int>mp;
    int main(){
    	cin>>T;
    	while(T--){mp.clear(); 
    		cin>>n>>s;mp[0]++;
    		long long ans=0,sum=0;
    		for(int i=0;i<n;i++){
    			sum+=s[i]-'1'; 
    			ans+=mp[sum];mp[sum]++;
    		}
    		cout<<ans<<endl;
    	}
    }
    

    D. Colored Rectangles

    Examples

    input

    1 1 1
    3
    5
    4
    

    output

    20
    

    input

    2 1 3
    9 5
    1
    2 8 5
    

    output

    99
    

    input

    10 1 1
    11 7 20 15 19 14 2 4 13 14
    8
    11
    

    output

    372
    

    题目大意:给定若干个红色,绿色,蓝色的一对长度一样的棍子.问用这些棍子组成的颜色不同的矩形的面积的最大总和是多少.注意不能把两个相同颜色的一对棍子拆成两个分别去用.其次颜色不同指的是在两个集合里选的两对棍子.

    数据范围:

    (1≤R,G,B≤200)

    思路

    首先比较容易想到的是贪心,但是这个题会跟棍子的数目有关,贪心会有很多问题,而且打补丁的方式是解决不了的.

    考虑O(n3)O(n3)的DP,由于一共就三种元素,不妨就直接按定义直接设计状态:

    状态:(f[i,j,k])表示红色用了i个,绿色用了j个,蓝色用了k个的前提下得到的矩形面积总和的最大值.

    入口:全为0即可,不需要额外处理.

    转移:三种匹配方式直接枚举即可.

    出口:所有值的最大值.

    注意点的话,防止int爆掉吧

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    #define int ll
    
    const int N = 205;
    int r[N],g[N],b[N];
    int f[N][N][N];
    signed main()
    {
    	ios::sync_with_stdio(0);cin.tie(0);
    	int R,G,B;cin >> R >> G >> B;
    	for(int i = 1;i <= R;++i)	cin >> r[i];sort(r + 1,r + R + 1,greater<int>());
    	for(int i = 1;i <= G;++i)	cin >> g[i];sort(g + 1,g + G + 1,greater<int>());
    	for(int i = 1;i <= B;++i)	cin >> b[i];sort(b + 1,b + B + 1,greater<int>());
    	int res = 0;
    	for(int i = 0;i <= R;++i)
    	{
    		for(int j = 0;j <= G;++j)
    		{
    			for(int k = 0;k <= B;++k)
    			{
    				auto& v = f[i][j][k];
    				if(i >= 1 && j >= 1)	v = max(v,f[i - 1][j - 1][k] + r[i] * g[j]);
    				if(j >= 1 && k >= 1)	v = max(v,f[i][j - 1][k - 1] + g[j] * b[k]);
    				if(i >= 1 && k >= 1)	v = max(v,f[i - 1][j][k - 1] + r[i] * b[k]);
    				res = max(res,v);
    			}
    		}
    	}
    	cout << res << endl;
        return 0;
    }
    

    E. Two Types of Spells

    Example

    input

    6
    1 5
    0 10
    1 -5
    0 5
    1 11
    0 -10
    

    output

    5
    25
    10
    15
    36
    21
    
  • 相关阅读:
    bzoj1615 [Usaco2008 Mar]The Loathesome Hay Baler麻烦的干草打包机
    bzoj3402 [Usaco2009 Open]Hide and Seek 捉迷藏
    CF B. Planning The Expedition
    Codeforces ~ 1009C ~ Annoying Present (贪心)
    Codeforces Round#498(Div.3)D. Two Strings Swaps
    牛客Another Distinct Values
    牛客多校第四场 G Maximum Mode
    可持化永久树 的 STL ( rope )
    KMP算法 (字符串的匹配)
    求(3+开根5) N次方的整数部分最后3位
  • 原文地址:https://www.cnblogs.com/RioTian/p/13507615.html
Copyright © 2020-2023  润新知