• 一个含有超几何函数的积分


    [Largeint_0^{large frac{pi}{2}} ln^2left( anfrac{x}{2} ight){ _3F_2}left(frac12,1,1;frac32,frac32;sin^2 x ight)mathrm{d}x = frac{5 pi^5}{384} ]


    (Largemathbf{Proof:})
    The ({;}_3F_2) is just a deception.

    [{;}_3F_2left(frac{1}{2},1,1;frac{3}{2},frac{3}{2};sin^2(x) ight) =sum_{n=0}^inftyfrac{(2sin x)^{2n}}{(2n+1)^2dbinom{2n}{n}}= frac{1}{sin x}int_0^xfrac{ heta}{sin heta}mathrm{d} heta ]

    This is obtained by the simple observation

    [frac{left(dfrac{1}{2} ight)_n (1)_n^2}{left(dfrac{3}{2} ight)_n^2 n!}=frac{4^n}{dbinom{2n}{n} (2n+1)^2} ]

    Also, note that (displaystyle frac{mathrm{d}}{mathrm{d}x}lnleft( an frac{x}{2} ight)=frac{1}{sin x}). Therefore, by repeated integration by parts:

    [egin{align*} &int_0^{large frac{pi}{2}} ln^2left( anfrac{x}{2} ight){ _3F_2}left(frac12,1,1;frac32,frac32;sin^2 x ight)mathrm{d}x=frac{1}{12}int_0^{frac{pi}{2}}ln^4left( anfrac{x}{2} ight)mathrm{d}x\ &=frac{1}{6}int_0^1frac{ln^4 x}{1+x^2}mathrm{d}x=frac{1}{6}sum_{n=0}^{infty }left ( -1 ight )^{n}int_{0}^{1}x^{2n}ln^{4}xmathrm{d}x=frac{1}{6} cdot 24sum_{n=0}^{infty }frac{left ( -1 ight )^{n}}{left ( 2n+1 ight )^{5}}\&=frac{1}{6}cdot 24cdot eta left ( 5 ight )=frac{1}{6}cdot 24cdot frac{5pi ^{5}}{1536}=Largeoxed{color{blue}{dfrac{5pi ^{5}}{384}}} end{align*}]

  • 相关阅读:
    吴裕雄--天生自然 PHP开发学习:数组
    吴裕雄--天生自然 JAVASCRIPT开发学习:测试 jQuery
    【t065】最敏捷的机器人
    【t079】火星上的加法运算
    【t053】整数去位
    【9604】纪念品分组
    【心情】bjdldrz
    【9601】零件分组
    【9916】编辑距离
    【38.24%】【POJ 1201】Intervals
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5453079.html
Copyright © 2020-2023  润新知