• 一个含有Zeta函数的级数


    [Largesum_{k=1}^{infty}frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}zeta(2k) ]


    (Largemathbf{Solution:})
    Within the interval (displaystyle 0 < x < pi/2\,), the logtangent function has the series representation

    [ln( an x)=ln x -sum_{k=1}^{infty}(-1)^kfrac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}x^{2k} ]

    So, let's integrate this series over a suitable interval, such as:

    [egin{align*} &int_{pi/4}^{pi/3}ln( an x)\,mathrm{d}x=int_{pi/4}^{pi/3}ln x\,mathrm{d}x- sum_{k=1}^{infty}(-1)^kfrac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}int_{pi/4}^{pi/3}x^{2k} \,mathrm{d}x\ &=left(xln x-x ight)Biggr|_{pi/4}^{pi/3}- sum_{k=1}^{infty}(-1)^kfrac{2^{2k}(2^{2k-1}-1)B_{2k}}{k\,(2k)!}left(frac{x^{2k+1}}{2k+1 } ight)Biggr|_{pi/4}^{pi/3}\ &=frac{pi}{3}lnfrac{pi}{3}-frac{pi}{4}lnfrac{pi}{4}-frac{pi}{12} -sum_{k=1}^{infty}(-1)^kfrac{2^{2k}(2^{2k-1}-1)B_{2k}pi^{2k+1}}{k\,(2k+1)\,(2k)!}left(frac{1}{3^{2k+1}}-frac{1}{4^{2k+1}} ight)\ &=pilnleft(frac{sqrt{2}\,pi^{1/12}}{3^{1/3}} ight)-frac{pi}{12} -sum_{k=1}^{infty}(-1)^kfrac{2^{2k}(2^{2k-1}-1)B_{2k}pi^{2k+1}}{k\,(2k+1)\,(2k)!}left(frac{4^{2k+1}-3^{2k+1}}{12^{2k+1}} ight)\ &=pilnleft(frac{sqrt{2}\,pi^{1/12}}{3^{1/3}\,e^{1/12}} ight) -sum_{k=1}^{infty}(-1)^kfrac{2^{2k}(2^{2k-1}-1)B_{2k}pi^{2k+1}}{k\,(2k+1)\,(2k)!}left(frac{4^{2k+1}-3^{2k+1}}{12^{2k+1}} ight) end{align*}]

    Next, we use the classic Zeta function result:

    [zeta(2n)=(-1)^{n+1}\,frac{B_{2n}\,pi^{2n}2^{2n-1}}{(2n)!} ]

    In the re-arranged form:

    [B_{2n}= (-1)^{n+1}frac{(2n)!}{pi^{2n}\,2^{2n-1}}zeta(2n) ]

    to obtain

    [pilnleft(frac{sqrt{2}\,pi^{1/12}}{3^{1/3}\,e^{1/12}} ight) +frac{pi}{6}\,sum_{k=1}^{infty}frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}zeta(2k) ]

    The logtangent integral is also solvable in terms of the extbf{Clausen Function}:

    [int_0^{phi}ln( an x)\,mathrm{d}x=-frac{1}{2} ext{Cl}_2(2phi)-frac{1}{2} ext{Cl}_2(pi-2phi) ]

    So the previous integral is equivalent to

    [int_{pi/4}^{pi/3}ln( an x)mathrm{d}x=-frac{1}{2} ext{Cl}_2left(frac{2pi}{3} ight)-frac{1}{2} ext{Cl}_2left(frac{pi}{3} ight)+ ext{Cl}_2left(frac{pi}{2} ight)= mathbf{G}-frac{5}{6} ext{Cl}_2left(frac{pi}{3} ight) ]

    Since

    [ ext{Cl}_2left(frac{2pi}{3} ight)=frac{2}{3} ext{Cl}_2left(frac{pi}{3} ight)~,~ ext{Cl}_2left(frac{pi}{2} ight)=mathbf{G} ]

    Equating the two different evaluations of the logtangent integral, we get the final result:

    [Largeoxed{displaystyle sum_{k=1}^{infty}frac{(2^{2k-1}-2)(4^{2k+1}-3^{2k+1})}{144^k\,k\,(2k+1)}zeta(2k)=color{Blue} {frac{6mathbf{G}}{pi}-frac{5}{pi} ext{Cl}_2left(frac{pi}{3} ight)+ 6lnleft(frac{3^{1/3}\,e^{1/12}}{sqrt{2}\,pi^{1/12}} ight)}} ]

    If expressed in terms of the Eta function (alternating Zeta function), since the logtangent series then reduces to:

    [ln( an x) = ln x + sum_{k=1}^{infty}frac{2^{2k}\,eta(2k)}{pi^{2k}\,k}x^{2k} ]

    So, for (displaystyle 0 < p < q <1/2\,) and (displaystyle p\, ,qin mathbb{Q}\,), we have

    [egin{align*} int_{ppi}^{qpi}ln( an x)\,mathrm{d}x&=frac{1}{2}left[ ext{Cl}_2(2ppi)+ ext{Cl}_2(pi-2ppi)- ext{Cl}_2(2qpi)- ext{Cl}_2(pi-2qpi) ight]\ &=left(xln x-x ight)Biggr|_{ppi}^{qpi}+pi sum_{k=1}^{infty}frac{2^{2k}(q^{2k+1}-p^{2k+1})}{k\,(2k+1)}eta(2k) end{align*}]

    Or

    [egin{align*} &sum_{k=1}^{infty}frac{2^{2k}(q^{2k+1}-p^{2k+1})}{k\,(2k+1)}eta(2k)\ &=frac{1}{2pi}left[ ext{Cl}_2(2ppi)+ ext{Cl}_2(pi-2ppi)- ext{Cl}_2(2qpi)- ext{Cl}_2(pi-2qpi) ight]-frac{1}{pi}left(xln x-x ight)Biggr|_{ppi}^{qpi} end{align*}]

    setting (p=1/4) and (q=3/10) gives the series:

    [largecolor{DarkGreen} {sum_{k=1}^{infty}frac{(6^{2k+1}-5^{2k+1})}{100^k\,k\,(2k+1)}eta(2k)=frac{20 mathbf{G}}{pi}-frac{10}{pi}left[ ext{Cl}_2left(frac{2pi}{5} ight)+ ext{Cl}_2left(frac{3pi}{5} ight) ight]+20lnleft(frac{5^{3/10}\,e^{1/20}}{2^{1/5}\,3^{3/10}\,pi^{1/20}} ight)} ]

  • 相关阅读:
    【POJ 2923】Relocation(状压DP+DP)
    【HDU 2955】Robberies(DP)
    【POJ 2250】Compromise(最长公共子序列LCS)
    【URAL 1917】Titan Ruins: Deadly Accuracy(DP)
    【POJ 1273】Drainage Ditches(网络流)
    HDU2896 病毒侵袭[AC自动机]
    1516. 棋盘上的车[组合数学][状态压缩]
    [HAOI2012] 容易题[母函数]
    [HAOI2012] 高速公路
    [HAOI2012]Road
  • 原文地址:https://www.cnblogs.com/Renascence-5/p/5440052.html
Copyright © 2020-2023  润新知