• Word Search


    Given a 2D board and a word, find if the word exists in the grid.

    The word can be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once.

    For example,
    Given board =

    [
      ["ABCE"],
      ["SFCS"],
      ["ADEE"]
    ]
    

    word = "ABCCED", -> returns true,
    word = "SEE", -> returns true,
    word = "ABCB", -> returns false.

    DFS

     1 public class Solution {
     2     public boolean exist(char[][] board, String word) {
     3         if(word == null) 
     4             return true;
     5         if(board.length == 0) 
     6             return false;
     7         
     8         for(int i = 0; i < board.length; i++){
     9             for(int j = 0; j < board[0].length; j++){
    10                 if(board[i][j] == word.charAt(0)){
    11                     if(find(0, word, i, j, new boolean[board.length][board[0].length], board))
    12                     return true;
    13                 }
    14             }
    15         }
    16         return false;
    17     }
    18     
    19     public boolean find(int depth, String word,  int i, int j, boolean[][] visited, char[][] board){
    20         if(depth == word.length())
    21             return true;
    22         
    23         if( i<0 || i>=board.length || j<0 || j>=board[0].length || visited[i][j] 
    24             || board[i][j] != word.charAt(depth)){
    25                 return false;
    26             }
    27         
    28         visited[i][j] = true;
    29         
    30         boolean res =   find(depth+1, word, i-1, j, visited, board) ||
    31                         find(depth+1, word, i+1, j, visited, board) ||
    32                         find(depth+1, word, i, j-1, visited, board) ||
    33                         find(depth+1, word, i , j+1, visited, board);
    34         if(res){ 
    35             return true;
    36         }else{
    37             visited[i][j] = false;
    38             return false;
    39         }
    40     }
    41 }

    空间优化 HashSet

    public class Solution {
        public boolean exist(char[][] board, String word) {
            if(word == null || word.length() < 1)
                return false;
            HashSet<Integer> done = new HashSet<Integer>();
            
            for(int i = 0; i < board.length; i++)
                for(int j =0; j < board[0].length; j++){
                    if(generate(board, i, j, 0, word, done))
                        return true;
                }
            
            return false;
        }
        
        private boolean generate(char[][] board, int row, int column, int depth, String word, HashSet<Integer> done){
            if(row < 0 || column < 0 || row >= board.length || column >= board[0].length)
                return false;
            int loc = row * board[0].length + column;
            if(done.contains(loc))
                return false;
            if(board[row][column] == word.charAt(depth)){
                if(depth == word.length()-1)
                    return true;
                done.add(loc);
                if(generate(board, row+1, column, depth+1,word,done))
                    return true;
                if(generate(board, row, column+1, depth+1,word,done))
                    return true;
                if(generate(board, row-1, column, depth+1,word,done))
                    return true;
                if(generate(board, row, column-1, depth+1,word,done))
                    return true;
                done.remove(loc);
            }
            return false;
        }
    }
    View Code

    ref: http://www.cnblogs.com/feiling/p/3292649.html

    网上关于深度优先搜索的总结帖:

    http://cuijing.org/interview/leetcode/summary-of-dfs-and-bfs-in-leetcode.html

    http://leetcodenotes.wordpress.com/2013/08/24/leetcode-word-search-%E4%BA%8C%E7%BB%B4%E7%9F%A9%E9%98%B5%E6%89%BE%E9%87%8C%E9%9D%A2%E7%9A%84%E5%8D%95%E8%AF%8D/

  • 相关阅读:
    不完全恢复用例
    全自动 TSPITR基于RMANSCN
    restore和recover的区别
    DG不同机器自己总结
    将10g RAC库用rman 的方式备份并恢复到异机 刚试验通过与大家分享
    Linux RH5平台下使用Oracle ASM创建数据库
    crs_stat状态失败后unregister掉相关进程
    ocr is not shared across all the nodes in the clus
    RMAN 备份与恢复 实例
    基于LINUX的Oracle+10G+RAC管理维护
  • 原文地址:https://www.cnblogs.com/RazerLu/p/3537456.html
Copyright © 2020-2023  润新知