• 机器学习之线性回归算法


    本节重点知识点用自己的话总结出来,可以配上图片,以及说明该知识点的重要性

    回归算法总结

      回归是统计学中最有力的工具之一。机器习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据而不仅仅是离散的类别标签。

    矩阵的运算

    最小二乘法

    思考线性回归算法可以用来做什么?

      线性回归的预测模型虽然是一元(线性)方程,但现实中很多应用场景符合这个模型,例如商品的价格与商品的销量之间的关系。一般来说价格越贵则销量越低,价格越便宜则销量越高,于是我们就能够用
    “销量=a*价格+b”这个模型来最大化商家的收益。

    自主编写线性回归算法

      

    import math
    import numpy as np
    import matplotlib.pyplot as plt
    
    from sklearn.preprocessing import PolynomialFeatures  # 多项式拟合
    from sklearn.linear_model import LinearRegression
    from sklearn.pipeline import Pipeline   #创建流水线
    from sklearn.metrics import mean_squared_error  #计算误差
    
    
    # 创建拟合模型
    def polynomial_model(degree=2):
        # 这是一个流水线,先增加多项式阶数,然后再用线性回归算法来拟合数据
        return Pipeline([("polynomial_features", PolynomialFeatures(degree=degree, include_bias=False)),
                         ("linear_regression", LinearRegression(normalize=True))])
    
    
    if __name__ == '__main__':
        print('33[5;31;2m%s33[0m' % '1、线性回归算法的应用')
        print("(1)首先,生成200个在[-2∏, 2∏]区间内的正弦函数上的点,并且给这些点加上一些随机的噪声。")
        pi = math.pi
        x = np.linspace(-2 * pi, 2 * pi, 200)
        y = np.sin(x) + 0.2 * np.random.rand(200) - 0.1
        x = x.reshape(-1, 1)
        y = y.reshape(-1, 1)
        # 显示点的效果
        # plt.scatter(x, y)
        # plt.show()
        print("生成数据完成")
    
        print("(2)接着,使用PolynomialFeatures和Pipeline创建一个多项式拟合模型,分别用2、3、5、10阶多项式来拟合数据集。")
        models = []
        for d in [2, 3, 5, 10]:
            model = polynomial_model(degree=d)
            model.fit(x, y)
            models.append({'model': model, 'degree': d})
        print("创建完成")
    
        print("(3)算出每个模型拟合的评分,然后使用mean_squared_error算出均主根误差,即实际点和模型预测的点之间的距离,均主根误差越小说明模型拟合效果 真好 。")
        for model in models:
            degree = model['degree']
            model = model['model']
            score = model.score(x, y)
            mse = mean_squared_error(y, model.predict(x))
            print("degree = %d, score=%f, mse=%f" % (degree, score, mse))
    
        print("(4)最后,请把不同模型的拟合效果在二维坐标上画出来,从而可以清楚对比不同除数的多项式的拟合效果。")
        plt.scatter(x, y)
        legends = []
        for model in models:
            degree = model['degree']
            model = model['model']
            legends.append('degree='+str(degree))
            plt.plot(x, model.predict(x))
        legends.append('scatter')
        plt.legend(legends)
        plt.title("Rakers")
        plt.show()
    

     

  • 相关阅读:
    Java多线程之赛跑游戏(含生成exe文件)
    JavaSE之绘制菱形
    JavaSE项目之员工收录系统
    深度解析continue,break和return
    如何查看yum安装路径
    转载 linux umount 时出现device is busy 的处理方法--fuser
    linux安装扩展总结
    linux 编译安装amqp
    vmware 实现linux目录映射window本地目录
    yaf学习之——生成yaf示例框架
  • 原文地址:https://www.cnblogs.com/Rakers1024/p/12752441.html
Copyright © 2020-2023  润新知