• 「莫比乌斯反演 」学习记录


    对于「学习记录」不含对知识点的解析,只是对本人写题的一个记录。

    • [ SDOI 2014 ]数表

      先不考虑 (a) 的情况,可以列出式子,不妨设 (n<m)

      [ans= sumlimits_{i=1}^n sumlimits_{j=1}^msigma(gcd(i,j)) ]

      [ans = sumlimits_{d=1}^{n} sumlimits_{i=1}^{leftlfloor frac{n}{d} ight floor} sumlimits_{j=1}^{leftlfloor frac{m}{d} ight floor} sigma(d)[gcd(i,j)=1] ]

      [ans = sumlimits_{d=1}^{n} sigma(d) sumlimits_{i=1}^{leftlfloor frac{n}{d} ight floor} sumlimits_{j=1}^{leftlfloor frac{m}{d} ight floor} sumlimits_{x|i,x|j} mu(x) ]

      [ans = sumlimits_{d=1}^n sigma(d) sumlimits_{x=1}^{ leftlfloor frac{n}{d} ight floor} mu(x) leftlfloor dfrac{n}{dx} ight floor leftlfloor dfrac{m}{dx} ight floor ]

      (t=dx) ,然后替换进去

      [ans = sumlimits_{t=1}^n leftlfloor dfrac{n}{t} ight floor leftlfloor dfrac{m}{t} ight floor sumlimits_{d|t} sigma(d) mu ( leftlfloor frac{t}{d} ight floor) ]

      此时可以整除分块,后一段预处理出来后存一下前缀和 (g_i = sumlimits_{d|i} sigma(d) mu( leftlfloor dfrac{i}{d} ight floor))

      现在考虑有 (a) 的限制,也就是 $ sigma(d) le a $ ,即我们只需要维护 (g_i)

      我们可以先离线一下询问,并且按照 (a_i) 来从小到大的排序。每次只需要动态对 (g_i) 进行修改,使本组的 (g_i) 满足 $ sigma(d) le a_i $,并在整除分块时查询区间和。此处可以选择树状数组。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    using namespace std;
    typedef long long ll;
    const ll N=1e5+5;
    const ll Mod=(1<<31);
    struct Query{
    	ll x,y,z,id;
    }q[N],qi[N];
    ll T,n,m,cnt,mu[N],d[N],sum[N],pri[N];
    ll t[N],ans[N];
    bool vis[N];
    bool cmp(Query a,Query b){
    	return a.z<b.z;
    }
    ll lowbit(ll x){return x&(-x);}
    void modify(ll x,ll y){
    	for(;x<=N-5;x+=lowbit(x))t[x]+=y;
    }
    ll query(ll x)
    {	ll res=0;
    	for(;x;x-=lowbit(x))res+=t[x];
    	return res;
    }
    void init()
    {	mu[1]=1;
    	for(ll i=2;i<=N-5;i++)
    	{	if(!vis[i])pri[++cnt]=i,mu[i]=-1;
    		for(ll j=1;j<=cnt&&pri[j]*i<=N-5;j++)
    		{	vis[i*pri[j]]=1;
    			if(i%pri[j]==0)break;
    			mu[i*pri[j]]=-mu[i];
    		}
    	}
    	for(ll i=1;i<=N-5;i++)
    		for(ll j=i;j<=N-5;j+=i)
    			d[j]+=i;
    	for(ll i=1;i<=N-5;i++)
    		qi[i].id=i,qi[i].z=d[i];
    	sort(qi+1,qi+1+(N-5),cmp);
    }
    ll solve(ll x,ll y)
    {	ll res=0;
    	for(ll l=1,r;l<=min(x,y);l=r+1)
    	{	r=min((x/(x/l)),(y/(y/l)));
    		res+=(x/l)*(y/l)*(query(r)-query(l-1));
    	}
    	return res;
    }
    int main()
    {	//freopen("P3312_2.in","r",stdin);
    	//freopen("ans.out","w",stdout);
    	scanf("%lld",&T);
    	for(ll i=1;i<=T;i++)
    	{	scanf("%lld%lld%lld",&q[i].x,&q[i].y,&q[i].z);
    		q[i].id=i;
    	}
    	sort(q+1,q+1+T,cmp);
    	init();
    	ll k=0;
    	for(ll i=1;i<=T;i++)
    	{	while(qi[k+1].z<=q[i].z&&k<N-5)
    		{	ll x=qi[++k].id;
    			for(ll j=1;j*x<=N-5;j++)modify(j*x,mu[j]*d[x]);
    		}
    		ans[q[i].id]=solve(q[i].x,q[i].y);
    	}
    	for(ll i=1;i<=T;i++)
    		printf("%lld
    ",ans[i]%Mod);
    	return 0;
    }
    

    • [国家集训队]Crash的数字表格

      题意:求 (ans = sumlimits_{i=1}^n sumlimits_{j=1}^m operatorname{lcm}(i,j))

      根据题意可以写出式子,不妨设 (n<m)

      [egin{aligned} ans &= sumlimits_{i=1}^n sumlimits_{j=1}^m operatorname{lcm}(i,j) \ &= sumlimits_{i=1}^n sumlimits_{j=1}^m dfrac{i cdot j}{gcd(i,j)} \ &= sumlimits_{d=1}^n sumlimits_{i=1}^n sumlimits_{j=1}^m dfrac{i cdot j}{d}[gcd(i,j)=d] \ &= sumlimits_{d=1}^n d sumlimits_{i=1}^{leftlfloor dfrac{n}{d} ight floor} sumlimits_{j=1}^{leftlfloor dfrac{m}{d} ight floor} i cdot j [gcd(i,j)=1] \ &= sumlimits_{d=1}^n d sumlimits_{i=1}^{leftlfloor dfrac{n}{d} ight floor} sumlimits_{j=1}^{leftlfloor dfrac{m}{d} ight floor} i cdot j sumlimits_{x|i,x|j} mu(x) end{aligned} ]

      枚举 (k)

      [egin{aligned} ans &= sumlimits_{d=1}^{n} d sumlimits_{k=1}^{leftlfloor dfrac{n}{d} ight floor} mu(k) cdot k^2 sumlimits_{i=1}^{leftlfloor dfrac{n}{d cdot k} ight floor} sumlimits_{j=1}^{leftlfloor dfrac{m}{d cdot k} ight floor} i cdot j end{aligned} ]

      此时,跑整除分块,用等差数列预处理后面式子,复杂度为 $O( sumlimits_{i=1}^{sqrt{n}} sqrt{leftlfloor dfrac{n}{i} ight floor} +sqrt{i} ) =O(int_0^{sqrt{n}} sqrt{x} dx) =O(n^{0.75}) $​​​ 。已经可以通过本题。

      但我们考虑继续优化。

      (s(x)=sumlimits_{i=1}^x i, t=dk) 。替换进去。

      [egin{aligned} ans &= sumlimits_{d=1}^n d sumlimits_{k=1}^{leftlfloor dfrac{n}{d} ight floor} mu(k) cdot k^2 cdot s(leftlfloor dfrac{n}{t} ight floor) cdot s(leftlfloor dfrac{m}{t} ight floor) end{aligned} ]

      枚举 (t)

      [egin{aligned} ans &= sumlimits_{t=1}^n s(leftlfloor dfrac{n}{t} ight floor) cdot s(leftlfloor dfrac{m}{t} ight floor) sumlimits_{d|t} d cdot mu( dfrac{t}{d} ) cdot (dfrac{t}{d})^2 \ &= sumlimits_{t=1}^n s(leftlfloor dfrac{n}{t} ight floor) cdot s(leftlfloor dfrac{m}{t} ight floor) sumlimits_{d|t} dfrac{t}{d} cdot mu( d ) cdot d^2 \ &= sumlimits_{t=1}^n s(leftlfloor dfrac{n}{t} ight floor) cdot s(leftlfloor dfrac{m}{t} ight floor) sumlimits_{d|t} t cdot mu( d ) cdot d end{aligned} ]

      不妨设 (f(x)= sumlimits_{d|x} mu(d) cdot d)

      考虑 (gcd(a,b)=1) 。有 (f(a)= sumlimits_{d|a} mu(d) cdot d,f(b)= sumlimits_{d|b} mu(d) cdot d)

      因为 (mu) 是积性函数,且 (a)(b) 是互质的,质因子不同。

      则在 (gcd(a,b)=1) 时, (f(a cdot b)=f(a) cdot f(b)) ,是积性函数。

      现在考虑 (a equiv 0 ( mod b )) ,且 (b) 为质数。则为 (b) 的因数一定为 (a) 的因数,且这几个 (mu(d) cdot d) 结果一定相同。而 (a) 中不为 (b) 的因数,质因数分解后次数一定大于 (1) ,也就是 (mu(d)=0) 。所以可以得出 (f(a)=f(b))

      这时已经可以线筛求出 (f(x)) 了。然后前缀和预处理时多乘上一个 (t) 。就可以整除分块直接求了。复杂度 (O(sqrt{n}))

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    using namespace std;
    typedef long long ll;
    const ll N=1e7+5;
    const ll Mod=20101009;
    ll n,m,cnt,ans,pri[N],mu[N],s[N],f[N];
    bool vis[N];
    void init()
    {	mu[1]=f[1]=1;
    	for(ll i=2;i<=N-5;i++)
    	{	if(!vis[i])mu[i]=-1,pri[++cnt]=i,f[i]=(1-i+Mod)%Mod;
    		for(ll j=1;i*pri[j]<=N-5&&j<=cnt;j++)
    		{	vis[i*pri[j]]=1;
    			if(i%pri[j]==0){f[i*pri[j]]=f[i];break;}
    			mu[i*pri[j]]=-mu[i];
    			f[i*pri[j]]=f[i]*f[pri[j]]%Mod;
    		}
    	}
    	for(ll i=1;i<=N-5;i++)f[i]=(f[i-1]+f[i]*i%Mod)%Mod;
    	for(ll i=1;i<=N-5;i++)s[i]=(s[i-1]+i)%Mod;
    }
    int main()
    {	init();
    	scanf("%lld%lld",&n,&m);
    	for(ll l=1,r;l<=min(n,m);l=r+1)
    	{	r=min(n/(n/l),m/(m/l));
    		ans=(ans+(f[r]-f[l-1]+Mod)%Mod*s[n/l]%Mod*s[m/l]%Mod)%Mod;
    	}
    	printf("%lld
    ",ans);
    	return 0;
    }
    

    • P3768 简单的数学题

      题意:求 (sumlimits_{i=1}^n sumlimits_{j=1}^n i cdot j cdot gcd(i,j))

      本题和[国家集训队]Crash的数字表格相似,或者说几乎一样 ,这里不再赘述。 其实就是懒

      [ans= sumlimits_{t=1}^n s( leftlfloor dfrac{n}{t} ight floor)^2 sumlimits_{d|t} t^2 cdot d cdot mu(leftlfloor dfrac{t}{d} ight floor) ]

      其中 (s(x)=sumlimits_{i=1}^x i)

      但数据范围是 (n le 10^{10}) ,所以 (s(x)) 直接用 (dfrac{n imes (n+1)}{2})

      (sumlimits_{d|t} t^2 cdot d cdot mu(leftlfloor dfrac{t}{d} ight floor)) ,考虑用杜教筛处理。

      因为 ((id* mu )(i)=varphi(i)) 。即 (sumlimits_{d|t} t^2 cdot d cdot mu(leftlfloor dfrac{t}{d} ight floor) = t^2 varphi(t)) 。令 (f(i)=i^2 varphi(i)) ,求 (S(n)=sumlimits_{i=1}^n f(n))

      杜教筛:

      [g(1)S(n)=sumlimits_{i=1}^n (g* f)(i)-sumlimits _ {i=2}^n g(i)S(dfrac{n}{i}) ]

      (g(x)=x^2) 。则:

      [S(n)=sumlimits _ {i=1}^n (g*f)(i)-sumlimits_{i=2}^n g(i)S(dfrac{n}{i}) ]

      因为 (sumlimits_{d|n} varphi(d) =n) 。则:

      [(g * f)(i)= sumlimits_{d|i} f(d)g(dfrac{i}{d}) = sumlimits_{d|i} d^2 varphi(i) (dfrac{i}{d})^2 = i^2 sumlimits_{d|i} varphi(i) = i^3 ]

      [S(n)= sumlimits_{i=1}^n i^3 -sumlimits_{i=2}^n i^2 S(dfrac{n}{i}) ]

      因为 (sumlimits_{i=1}^n i^3 = (sumlimits_{i=1}^n i)^2 = dfrac{n(n+1)(2n+1)}{6}) ,为 (s(n)^2)

      此时 (S(n)) 已经可以用杜教筛算出。前面用整除分块即可,复杂度 (O(n^{frac{2}{3}} + sqrt{n}))

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<map>
    using namespace std;
    typedef long long ll;
    const ll N=8e6+5;
    ll n,Mod,ans,inv6,inv2,cnt,pri[N],pi[N];
    bool vis[N];
    map<ll,ll> mp;
    ll qpow(ll x,ll k)
    {	ll res=1;
    	while(k)
    	{	if(k&1)res=res*x%Mod;
    		x=x*x%Mod;
    		k>>=1;
    	}
    	return res;
    }
    void init()
    {	vis[1]=1;pi[1]=1;
    	for(ll i=2;i<=N-5;i++)
    	{	if(!vis[i])pri[++cnt]=i,pi[i]=i-1;
    		for(ll j=1;j<=cnt&&i*pri[j]<=N-5;j++)
    		{	vis[i*pri[j]]=1;
    			if(i%pri[j])pi[i*pri[j]]=1ll*pi[i]*pi[pri[j]]%Mod;
    			else {pi[i*pri[j]]=pi[i]*pri[j]%Mod;break;}
    		}
    	}
    	for(ll i=1;i<=N-5;i++)pi[i]=(pi[i-1]+pi[i]*i%Mod*i%Mod)%Mod;
    }
    ll getsum(ll x)
    {	x%=Mod;
    	return x*(x+1)%Mod*inv2%Mod;
    }
    ll getsump(ll x)
    {	x%=Mod;
    	return x*(x+1)%Mod*(x+x+1)%Mod*inv6%Mod;
    }
    ll getpi(ll x)
    {	if(x<=N-5)return pi[x];
    	if(mp[x])return mp[x];
    	ll res=getsum(x);
    	res=res*res%Mod;
    	for(ll l=2,r;l<=x;l=r+1)
    	{	r=x/(x/l);
    		ll t=(getsump(r)-getsump(l-1))%Mod;
    		res=(res-getpi(x/l)*t%Mod+Mod)%Mod;
    	}
    	return mp[x]=res;
    }
    int main()
    {	scanf("%lld%lld",&Mod,&n);
    	inv2=qpow(2,Mod-2);inv6=qpow(6,Mod-2);
    	init();
    	for(ll l=1,r;l<=n;l=r+1)
    	{	r=n/(n/l);
    		ll t=getsum(n/l),g=(getpi(r)-getpi(l-1))%Mod;
    		t=t*t%Mod;g=(g+Mod)%Mod;
    		ans=(ans+g*t%Mod)%Mod;
    	}
    	printf("%lld
    ",ans);
    	return 0;
    }
    

    • [SDOI2017]数字表格

      题意:定义 (f(0)=f(1)=1,f(n)=f(n-1)+f(n-2)) ,求:

      [prodlimits_{i=1}^n prodlimits_{j=1}^m f(gcd(i,j)) ]

      不妨设 (n<m)

      [egin{aligned} ans &= prodlimits_{d=1}^n prodlimits_{i=1}^n prodlimits_{j=1}^m f(d)[gcd(i,j)=d] \ &= prodlimits_{d=1}^n f(d)^{sumlimits_{i=1}^{leftlfloor frac{n}{d} ight floor}sumlimits_{j=1}^{leftlfloor frac{m}{d} ight floor} [gcd(i,j)=1]} end{aligned} ]

      因为写的太丑了,所以单独拎出指数。

      [egin{aligned} sumlimits_{i=1}^{leftlfloor frac{n}{d} ight floor}sumlimits_{j=1}^{leftlfloor frac{m}{d} ight floor} [gcd(i,j)=1]=sumlimits_{k=1}^{leftlfloor frac{n}{d} ight floor} mu(k) leftlfloor frac{n}{dk} ight floor leftlfloor frac{m}{dk} ight floor end{aligned} ]

      (t=dk)

      [egin{aligned} sumlimits_{k=1}^{leftlfloor frac{n}{d} ight floor} mu(leftlfloor frac{n}{d} ight floor) leftlfloor frac{n}{t} ight floor leftlfloor frac{m}{t} ight floor end{aligned} ]

      [egin{aligned} ans &=prodlimits_{d=1}^n f(d)^{sumlimits_{k=1}^{leftlfloor frac{n}{d} ight floor} mu(leftlfloor frac{n}{d} ight floor) leftlfloor frac{n}{t} ight floor leftlfloor frac{m}{t} ight floor} \ &= prodlimits _{t=1}^n prod_{d|t} f(d)^{mu(leftlfloor frac{n}{d} ight floor) leftlfloor frac{n}{t} ight floor leftlfloor frac{m}{t} ight floor} \ &= prodlimits _{t=1}^n prod_{d|t} left( f(d)^{mu(leftlfloor frac{n}{d} ight floor) } ight) ^{leftlfloor frac{n}{t} ight floor leftlfloor frac{m}{t} ight floor} end{aligned} ]

      此时我们可以对第一个 (prod) 进行整除分块。那里面呢?

      考虑暴力算,复杂度 (O(n))

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    using namespace std;
    typedef long long ll;
    const ll N=1e6+5;
    const ll Mod=1e9+7;
    ll T,n,m,cnt,ans,inv,pri[N],mu[N],f[N],g[N],F[N];
    bool vis[N];
    ll qpow(ll x,ll k)
    {	ll res=1;
    	while(k)
    	{	if(k&1)res=res*x%Mod;
    		x=x*x%Mod;
    		k>>=1;
    	}
    	return res;
    }
    void init()
    {	f[1]=g[1]=F[0]=F[1]=mu[1]=1;
    	vis[1]=1;
    	for(ll i=2;i<=N-5;i++)
    	{	f[i]=(f[i-1]+f[i-2])%Mod;
    		g[i]=qpow(f[i],Mod-2);F[i]=1;
    		if(!vis[i])pri[++cnt]=i,mu[i]=-1;
    		for(ll j=1;j<=cnt&&pri[j]*i<=N-5;j++)
    		{	vis[i*pri[j]]=1;
    			if(i%pri[j]==0)break;
    			mu[i*pri[j]]=-mu[i];
    		}
    	}
    	for(ll i=1;i<=N-5;i++)
    	{	if(!mu[i])continue;
    		for(ll j=i;j<=N-5;j+=i)
    			F[j]=F[j]*(mu[i]==1?f[j/i]:g[j/i])%Mod;
    	}
    	for(ll i=2;i<=N-5;i++)F[i]=F[i]*F[i-1]%Mod;
    }
    int main()
    {	init();
    	scanf("%lld",&T);
    	while(T--)
    	{	scanf("%lld%lld",&n,&m);
    		ans=1ll;inv=1ll;
    		for(ll l=1,r;l<=min(n,m);l=r+1)
    		{	r=min(n/(n/l),m/(m/l));
    			inv=F[r]*qpow(F[l-1],Mod-2)%Mod;
    			ans=ans*qpow(inv,(n/l)*(m/l))%Mod;
    		}
    		printf("%lld
    ",ans);
    	}
    	return 0;
    }
    

    • DIVCNT2 - Counting Divisors (square)

      题意:求 (sumlimits_{i=1}^n d(i^2)) ,其中 (d(x)) 表示 (x) 的约数个数。

      约定,$mathbf{1}(n)=mathbf{id}^0(n)=1 $ 。

      不妨设 (n=prodlimits_{i=1}^k p_i^{a_i}) ,则 (n^2=prodlimits_{i=1}^k p_i^{2a_i})

      [egin{aligned} d(i^2) &= sumlimits_{u|i} sumlimits_{v|i} [gcd(u,v)=1] \ &=sumlimits_{x|i} sumlimits_{u|x} [gcd(u,dfrac{x}{u})=1] end{aligned} ]

      这一部分可以理解为,一个因数 (x) 的质因数要么给 (u) ,要么不给 (u) (若不全给即不影响结果)。所以一个质因数就有两种结果,即 (2^{omega(x)}) ,其中 (x) 表示质因数个数。

      [egin{aligned} d(i^2) &= sumlimits_{s subseteq {1,2,...,k}} 2^{|s|} imes prodlimits_{i in s} a_i \ &=sumlimits _{d|n} mu ^2(d) end{aligned} ]

      (f(n)= d(n^2),g(n)=2^ {omega(n)},h(n)=mu^2(n)) ,则 $ f = g * mathbf{1},g=h*mathbf{1}$ 。

      所以 (f=h * mathbf{1} * mathbf{1} = h * (mathbf{1} * mathbf{1})=h * d = mu ^2(n)*d) 。本题即求 (f) 的前缀和。

      也就是说我们要预处理 (mu^2(n))(d) 。首先 (d) 很显然:

      [sumlimits_{i=1}^nd(i)=sumlimits_{i=1}^n leftlfloor dfrac{n}{i} ight floor ]

      整除分块即可,复杂度 (mathcal{O}(sqrt{n}))

      考虑 (mu^2(n)) ,不妨设 (s(n)) 为满足 (k^2|n) 的最大 (k) 。所以 (d|s(n) Leftrightarrow d^2 | n) ,继续推导:

      [mu^2(n) = [s(n)=1] = sumlimits_{d|s(n)} mu(d) = sumlimits_{d^2 | n}mu(d) ]

      于是

      [sumlimits_{i=1}^n mu^2(i) = sumlimits_{i=1}^n sumlimits_{d^2 | i} mu(d)= sumlimits_{i=1} ^ {sqrt{n}} mu(i) cdot leftlfloor dfrac{n}{i^2} ight floor ]

      这样就可以 (mathcal{O}(sqrt{n})) 算了。整除分块套整除分块,考虑预处理 (n^{frac{2}{3}}) 的前缀和。 复杂度 (mathcal{O}(n^{frac{2}{3}})) ,可以通过本题。

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    using namespace std;
    typedef long long ll;
    const int N=2e5+5,M=1e8+5;
    ll n,mx,B,s[M],a[N];
    int cnt,pri[M],smu[M];
    char mu[M];
    bool vis[M];
    void init(int m)
    {	s[1]=1;smu[1]=1;mu[1]=1;
    	for(int i=2;i<=m;i++)
    	{	if(!vis[i])pri[++cnt]=i,mu[i]=-1,smu[i]=1,s[i]=2;
    		for(int j=1;j<=cnt&&i*pri[j]<=m;j++)
    		{	vis[i*pri[j]]=1;
    			if(i%pri[j]==0)
    			{	s[i*pri[j]]=s[i]/(smu[i]+1)*(smu[i]+2);
    				smu[i*pri[j]]=smu[i]+1;
    				mu[i*pri[j]]=0;
    				break;
    			}
    			s[i*pri[j]]=s[i]*2;
    			smu[i*pri[j]]=1;
    			mu[i*pri[j]]=-mu[i];
    		}
    	}
    	for(int i=1;i<=m;i++)
    	{	s[i]+=s[i-1];
    		smu[i]=smu[i-1]+abs((int)mu[i]);
    	}
    }
    ll getr(ll x)
    {	if(x<=B)return s[x];
    	ll res=0;
    	for(ll l=1,r;l<=x;l=r+1)
    	{	r=(x/(x/l));
    		res+=(r-l+1)*(x/l);
    	}
    	return res;
    }
    ll getsmu(ll x)
    {	if(x<=B)return smu[x];
    	ll res=0;
    	for(ll i=1;i*i<=x;i++)
    		if(mu[i])res+=mu[i]*(x/(i*i));
    	return res;
    }
    void solve(ll nn)
    {	ll m=sqrt(nn),pre=smu[m],tt,ans=0;
    	for(int i=1;i<=m;i++)
    		if(mu[i])ans+=getr(nn/i);
    	for(ll l=m+1,r;l<=nn;l=r+1)
    	{	r=(nn/(nn/l));
    		tt=getsmu(r);
    		ans+=(tt-pre)*getr(nn/l);
    		pre=tt;
    	}
    	printf("%lld
    ",ans);
    }
    int main()
    {	scanf("%lld",&n);
    	for(int i=1;i<=n;i++)
    	{	scanf("%lld",&a[i]);
    		mx=max(mx,a[i]);
    	}
    	if(mx<=10000)B=10000;
    	else B=pow(1000000000000,2.0/3.0);
    	init(B);
    	for(int i=1;i<=n;i++)
    		solve(a[i]);
    	return 0;
    }
    

    [ ext{by Rainy7} ]

  • 相关阅读:
    Leetcode: Reverse Integer
    Leetcode: Two Sum
    Leetcode: Path Sum
    make distclean
    makefile 中 foreach
    nor flash 和 nand flash
    端口(port)的安全模式(security mode)
    单片机入门(二)
    单片机入门(一)
    kworker
  • 原文地址:https://www.cnblogs.com/Rainy7/p/Mobius-record.html
Copyright © 2020-2023  润新知