• 浅谈LCT


    动态树之LCT(link-cut tree)讲解

    前言

      动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作。其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT(link-cut tree)。

      LCT的大体思想类似于树链剖分中的轻重链剖分,轻重链剖分是处理出重链来,由于重链的定义和树链剖分是处理静态树所限,重链不会变化,变化的只是重链上的边或点的权值,由于这个性质,我们用线段树来维护树链剖分中的重链,但是LCT解决的是动态树问题(包含静态树),所以需要用更灵活的splay来维护这里的“重链”。

    定义:

      首先来定义一些量:

      1、access(X):表示访问X点(之后会有说明)。

      2、Preferred child(偏爱子节点):如果最后被访问的点在X的儿子P节点的子树中,那么称P为X的Preferred child,如果一个点被访问,他的Preferred child为null(即没有)。

      3、Preferred edge(偏爱边):每个点到自己的Preferred child的边被称为Preferred edge。

      4、Preferred path(偏爱路径):由Preferred edge组成的不可延伸的路径称为Preferred path。

    这样我们可以发现一些比较显然的性质,每个点在且仅在一条Preferred path上,也就是所有的Preferred path包含了这棵树上的所有的点,这样一颗树就可以由一些Preferred path来表示(类似于轻重链剖分中的重链),我们用splay来维护每个条Preferred path,关键字为深度,也就是每棵splay中的点左子树的深度都比当前点小,右节点的深度都比当前节点的深度大。这样的每棵splay我们称为Auxiliary tree(辅助树),每个Auxiliary tree的根节点保存这个Auxiliary tree与上一棵Auxiliary tree中的哪个点相连。这个点称作他的Path parent。

    操作:

    access(X):首先由于preferred path的定义,如果一个点被访问,那么这个点到根节点的所有的边都会变成preferred edge,由于每个点只有一个preferred child,所以这个点到根节点路径上的所有的点都会和原来的preferred child断开,连接到这条新的preferred path上。假设访问X点,那么先将X点旋转到对应Auxiliary tree的根节点,然后因为被访问的点是没有preferred child的,所以将Auxiliary tree中根节点(X)与右子树的边断掉,左节点保留,将这个树的path parent旋转到对应Auxiliary tree的根节点,断掉右子树,连接这个点与X点,相当于合并两棵Auxiliary tree,不断地重复这一操作,直到当前X所在Auxiliary tree的path parent为null时停止,表示已经完成当前操作。

    procedure access(x:longint);
    var
        y:longint;
    begin
        splay(x);//旋转
        while father[x]<>0 do
        begin
            y:=father[x];
            splay(y);
            root[son[y,1]]:=true;//son为子节点son[x,0]代表左子结点,son[x,1]代表右子结点
            root[x]:=false;//当前点是否为对应Auxiliary tree的根节点
            son[y,1]:=x;
            update(y);//更新y点的信息
            splay(x);
        end;
    end;

    find root(x):找到某一点所在树的根节点(维护森林时使用)。只需要access(X),然后将X节点旋到对应Auxiliary tree的根节点,然后找到这个Auxiliary tree中最左面的点。

    function find root(x:longint):longint;
    begin
      access(x);
      splay(x);//将X旋转到根节点
      exit(find(x,-maxlongint));//找到子树中最左面的点
    end;

    cut(x):断掉X节点和其父节点相连的边。首先access(X),然后将X旋转到对应Auxiliary tree的根节点,然后断掉Auxiliary tree中X和左节点相连的边。

    procedure cut(x:longint);
    begin
      access(x);
      splay(x);//旋转x点到根节点
      father[son[x,0]]:=0;
      root[son[x,0]]:=true;//设置左子树根节点
      son[x,0]:=-1;
    end;

    link(join)(x,y):连接点x到y点上。即让x称为y的子节点。因为x为y的子节点后,在原x的子树中,x点到根节点的所有的点的深度会被翻转过来,所以先access(x),然后在对应的Auxiliary tree中将x旋转到根节点,,然后将左子树翻转(splay中的reverse操作),然后access(y),将y旋转到对应Auxiliary tree中的根节点,将x连到y就行了。

    procedure link(x,y:longint);
    begin
      access(x);
      splay(x);
      reverse(son[x,0]);
      access(y);
      splay(y);
      son[y,1]:=x;
      father[x]:=y;
      root[x]:=false;
    end;

    access操作是LCT的基础,应该熟练掌握并且理解。

    我活在这夜里。无论周围多么黑暗,我都要努力发光!我相信着,终有一天,我会在这深邃的夜里,造就一道最美的彩虹。
  • 相关阅读:
    20201022-1 每周例行报告
    Alpha发布
    每周例行报告
    20201207-总结
    20201126-1 每周例行报告
    作业要求 20201120-1 每周例行报告
    20201112-1 每周例行报告
    作业要求 20201015-3 每周例行报告
    20200924-5 四则运算试题生成,结对
    20200924-1 每周例行报告
  • 原文地址:https://www.cnblogs.com/RainbowCrown/p/11148418.html
Copyright © 2020-2023  润新知