Codeforces Round #491 (Div. 2)
A. If at first you don't succeed...
按题意判断
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define mem(W) memset(W,0,sizeof(W))
typedef long long ll;
inline int read() {
char c=getchar();int x=0,f=1;
while(!isdigit(c)){if(f=='-')f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
using namespace std;
int n,a,b,c;
int main() {
scanf("%d%d%d%d",&a,&b,&c,&n);
int p = a+b-c;
if(a>=c&&b>=c&&n-p>=1) printf("%d
",n-p);
else printf("-1
");
return 0;
}
B. Getting an A
排序之后,暴力修改加check...被fst。。。凉透
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define mem(W) memset(W,0,sizeof(W))
typedef long long ll;
inline int read() {
char c=getchar();int x=0,f=1;
while(!isdigit(c)){if(f=='-')f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
using namespace std;
int n;
int a[111];
bool ck() {
double x=0;
rep(i,1,n)x+=a[i];
x/=n;
return (int)(x+0.5) == 5;
}
int main() {
scanf("%d",&n);
rep(i,1,n)scanf("%d",&a[i]);
sort(a+1,a+n+1);int ans=0;
rep(i,1,n+1) {
if(ck()){
printf("%d
",ans);
return 0;
}
if(a[i]<5){
a[i]=5;
++ans;
}
}
return 0;
}
C. Candies
每次减(frac{1}{10})的这个操作使得数减小的非常快,二分k暴力模拟即可
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define mem(W) memset(W,0,sizeof(W))
typedef long long ll;
inline int read() {
char c=getchar();int x=0,f=1;
while(!isdigit(c)){if(f=='-')f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
using namespace std;
ll n;
int ck(ll k) {
ll tn=n,x,res=0;
while(tn) {
if(tn<k) res+=tn,tn=0;
else tn-=k,res+=k;
if(tn>=10){
x = tn/10;
tn -= x;
}
}
return (res*2LL >= n);
}
int A[10000];
int main() {
scanf("%I64d",&n);
ll l=1,r=n,ans,mid;
while(l<=r){
mid = (l+r)/2LL;
if(ck(mid))r=mid-1,ans=mid;
else l=mid+1;
}
printf("%I64d
",ans);
return 0;
}
D. Bishwock
直接搜索即可。。。一开始推了个假的结论打算小范围暴力,然后dp,WA了。。。无奈交了暴力的代码。。过了
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define mem(W) memset(W,0,sizeof(W))
typedef long long ll;
inline int read() {
char c=getchar();int x=0,f=1;
while(!isdigit(c)){if(f=='-')f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
using namespace std;
int n,ans;
char s[2][111];
void dfs(int now,int ed,int d){
if(now==ed+1){
ans = max(ans,d);
return;
}
if(s[0][now-1]=='0'&&s[1][now-1]=='0'&&s[0][now]=='0'){
s[0][now-1]=s[1][now-1]=s[0][now]='X';
dfs(now+1,ed,d+1);
s[0][now-1]=s[1][now-1]=s[0][now]='0';
}
else if(s[0][now-1]=='0'&&s[1][now-1]=='0'&&s[1][now]=='0'){
s[0][now-1]=s[1][now-1]=s[1][now]='X';
dfs(now+1,ed,d+1);
s[0][now-1]=s[1][now-1]=s[1][now]='0';
}
else if(s[0][now-1]=='0'&&s[1][now]=='0'&&s[0][now]=='0'){
s[0][now-1]=s[1][now]=s[0][now]='X';
dfs(now+1,ed,d+1);
s[0][now-1]=s[1][now]=s[0][now]='0';
}
else if(s[1][now-1]=='0'&&s[1][now]=='0'&&s[0][now]=='0'){
s[1][now-1]=s[1][now]=s[0][now]='X';
dfs(now+1,ed,d+1);
s[1][now-1]=s[1][now]=s[0][now]='0';
}
else dfs(now+1,ed,d);
}
int solve(int l,int r){
ans=0;
dfs(l+1,r,0);
return ans;
}
int dp[111];
int main() {
scanf(" %s",s[0]);
scanf(" %s",s[1]);
n = strlen(s[0]);
cout << solve(0,n-1) << endl;
return 0;
}
E. Bus Number
统计0~9出现的次数,按题意暴力枚举每个数分别出现多少个,这个复杂度可以接受,对于每个情况设一共有sum个数字,A[i]为数字i出现的次数,那么(frac{sum!}{A[0]!A[1]!...A[9]!})为不管前导0情况下的排列数,现在考虑如何计算有前导0的情况,把非0的数仿照上边的方法求出排列数,现在把一个0放到开头,剩余的0插空放在这sum个数之间即可,这是经典的球盒模型,球无别,盒子有别可空。把上面两个值相减就是答案。。。。欲哭无泪的手速。。。
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define mem(W) memset(W,0,sizeof(W))
typedef long long ll;
inline int read() {
char c=getchar();int x=0,f=1;
while(!isdigit(c)){if(f=='-')f=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}
return x*f;
}
const int N = 105;
using namespace std;
int n;
char s[33];
int p[N], notp[N], nxt[N], b[N];
void init(){
notp[1]=1;nxt[1]=1;
for(int i=2;i<=20;++i) {
if(!notp[i]) p[++p[0]]=i,nxt[i]=i;
for(int j=1;j<=p[0]&&i*p[j]<=20;++j) {
notp[i*p[j]] = 1;nxt[i*p[j]]=p[j];
if(i%p[j]==0)break;
}
}
}
ll q_pow(ll a,ll b) {
ll ans=1;
while(b) {
if(b&1LL) ans=(ans*a);
a=(a*a);
b>>=1LL;
}
return ans;
}
inline void add(int x,int f) {
while(x!=1){
b[nxt[x]]+=f;
x/=nxt[x];
}
}
ll cal() {
ll ans = 1;
rep(i,1,p[0])ans = (ans*q_pow(p[i],b[p[i]])),b[p[i]]=0;
return ans;
}
ll ans=0;
int sum=0,num[11],A[11];
string v;
set<string> ts;
void solve(){v.clear();
rep(i,0,9)rep(j,1,num[i])v+=(char)('0'+i);
int T = 1;
for(int i=1;i<=v.size();++i) T*=i;
while(T--){
cout << v <<endl;
if(v[0]!='0')ts.insert(v);
next_permutation(v.begin(),v.end());
}
}
void dfs(int t) {
if(t==10){
rep(i,1,sum)add(i,1);
rep(i,0,9){
rep(j,1,num[i]) add(j,-1);
}
//solve();
ans += cal();
if(num[0]){
int m = sum-num[0]+1, n = num[0]-1;
rep(i,1,m+n-1)add(i,1);
rep(i,1,m-1)add(i,-1);
rep(i,1,n)add(i,-1);
rep(i,1,sum-num[0])add(i,1);
rep(i,1,9)rep(j,1,num[i])add(j,-1);
ans -= cal();
}
return;
}
if(A[t]==0)dfs(t+1);
else {
rep(i,1,A[t]){
num[t]+=i;
sum+=i;
dfs(t+1);
num[t]-=i;
sum-=i;
}
}
}
int main() {
init();
scanf(" %s",s);
n=strlen(s);
rep(i,0,n-1)++A[s[i]-'0'];
dfs(0);
printf("%I64d
",ans);
//cout << ts.size() << endl;
return 0;
}