• P3308-[SDOI2014]LIS【最小割】


    正题

    题目链接:https://www.luogu.com.cn/problem/P3308


    题目大意

    三个(n)个数字的序列(A,B,C)。要求删除其中某些位置(i)使得(A)的最长上升子序列至少减少(1)且删去位置(B)的权值和最小的情况下满足删去位置的(C)值升序排序后字典序最小。


    解题思路

    首先(B)值最小很好求,跑一遍(LIS)(dp),然后每个点拆成两个点,然后如果(f[x])转移到(f[y])是最优的就建边然后跑最小割就好了。
    大体和P2766 最长不下降子序列问题差不多

    也就是现在我们要求字典序最小的最小割,需要利用到最小割的性质。

    如果一条边(x,y)是可行割,那么它满足在残量网络上(x)到达不了(y)

    首先如果(x->y)没有满流那么肯定不是最小割,其次如果满流了但是还有一条(x)(y)的路径,那么证明如果走这条增广路一定可以使最大流更大,所以也不是最小割。

    那么这样我们就可以判断一条边是否可行了,然后需要消去其他等价边的影响,大体方法是从(T)(y)跑一次(dinic),再从(x)(S)跑一次(dinic)。这个操作叫退流,这样残量网络就变成了满流边(x->y)的残量网络了。

    先跑一次(dinic),然后按照(C)值排序,从小到大判断加入边即可。


    code

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<queue>
    #include<vector>
    #define ll long long
    using namespace std;
    const ll N=710*2,inf=1e18;
    struct node{
        ll to,next,w;
    }a[N*N];
    ll T,n,tot,ls[N],dep[N],A[N],B[N],C[N],f[N],p[N];
    vector<ll> prt;queue<ll> q;
    void addl(ll x,ll y,ll w){
        a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;
        a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;
    }
    bool bfs(ll s,ll t){
        while(!q.empty())q.pop();q.push(s);
        memset(dep,0,sizeof(dep));dep[s]=1;
        while(!q.empty()){
            ll x=q.front();q.pop();
            for(ll i=ls[x];i;i=a[i].next){
                ll y=a[i].to;
                if(dep[y]||!a[i].w)continue;
                dep[y]=dep[x]+1;
                if(y==t)return 1;
                q.push(y);
            }
        }
        return 0;
    }
    ll dinic(ll x,ll t,ll flow){
        if(x==t)return flow;
        ll rest=0,k;
        for(ll i=ls[x];i;i=a[i].next){
            ll y=a[i].to;
            if(dep[x]+1!=dep[y]||!a[i].w)continue;
            rest+=(k=dinic(y,t,min(flow-rest,a[i].w)));
            a[i].w-=k;a[i^1].w+=k;
            if(rest==flow)return flow;
        }
        if(!rest)dep[x]=0;
        return rest; 
    }
    bool cmp(ll x,ll y)
    {return C[x]<C[y];}
    signed main()
    {
        scanf("%lld",&T);
        while(T--){
            memset(ls,0,sizeof(ls));tot=1;
            scanf("%lld",&n);
            for(ll i=1;i<=n;i++)scanf("%lld",&A[i]);
            for(ll i=1;i<=n;i++)scanf("%lld",&B[i]);
            for(ll i=1;i<=n;i++)scanf("%lld",&C[i]);
            ll maxs=0,s=2*n+1,t=s+1;
            for(ll i=1;i<=n;i++){
                f[i]=1;p[i]=i;
                for(ll j=1;j<i;j++)
                    if(A[i]>A[j])f[i]=max(f[i],f[j]+1);
                maxs=max(maxs,f[i]);
            }
            for(ll i=1;i<=n;i++){
                if(f[i]==1)addl(s,i,inf);
                if(f[i]==maxs)addl(i+n,t,inf);
                addl(i,i+n,B[i]);
                for(ll j=i+1;j<=n;j++)
                    if(A[i]<A[j]&&f[i]+1==f[j])
                        addl(i+n,j,inf);
            }
            ll ans=0;prt.clear();
            while(bfs(s,t))
                ans+=dinic(s,t,inf);
            printf("%lld ",ans);
            sort(p+1,p+1+n,cmp);
            for(ll i=1;i<=n;i++){
                ll x=p[i];
                if(bfs(x,x+n))continue;
                while(bfs(t,x+n))dinic(t,x+n,inf);
                while(bfs(x,s))dinic(x,s,inf);
                prt.push_back(x);
            }
            printf("%lld
    ",prt.size());
            sort(prt.begin(),prt.end());
            for(ll i=0;i<prt.size();i++)
                printf("%lld ",prt[i]);
            putchar('
    ');
        }
        return 0;
    }
    
  • 相关阅读:
    Linux系统挂载NTFS移动硬盘
    ActiveReport报表开发谈谈ActiveReport的中文化问题
    硬件接口开发之USB电话录音盒来电显示
    如何使用正则表达式进行QQ校友的数据采集
    硬件接口开发之Modem来电显示
    关于MSHTML控件使用的问题
    【转】ISession接口介绍
    发送带嵌入图片邮件之SMTP实现和ESMTP实现
    C#进行MapX二次开发之地图搜索
    Database2Sharp混淆处理之经验分享(国庆专辑,祝福我们的祖国)
  • 原文地址:https://www.cnblogs.com/QuantAsk/p/14297067.html
Copyright © 2020-2023  润新知