• P3974 [TJOI2015]组合数学


    定理1 令X是一个有限偏序集,并令r是其最大链的大小。则X可以被划分成r个但不能再少的反链。 其对偶定理称为Dilworth定理:
    定理2 令X是一个有限偏序集,并令m是反链的最大的大小。则X可以被划分成m个但不能再少的链。

    证明:
    设p为最少反链个数
    (1)先证明X不能划分成小于r个反链。由于r是最大链C的大小,C中任两个元素都可比,因此C中任两个元素都不能属于同一反链。所以p>=r。
    (2)设X1=X,A1是X1中的极小元的集合。从X1中删除A1得到X2。注意到对于X2中任意元素a2,必存在X1中的元素a1,使得a1<=a2。令A2是X2中极小元的集合,从X2中删除A2得到X3……最终,会有一个Xk非空而X(k+1)为空。于是A1,A2,...,Ak就是X的反链的划分,同时存在链a1<=a2<=...<=ak,其中ai在Ai内。由于r是最长链大小,因此r>=k。由于X被划分成了k个反链,因此r>=k>=p。因此r=p,定理1得证。

    扩展到这题,是个DAG,那么这题的最小链覆盖数就是最大点独立集(链可以交)
    对于这题网格图 对于点(i,j),与其有偏序关系的是(i-1,j)//向下走,(i,j+1)//向右走,与其没有偏序关系的就是(i-1,j+1)

    这样的关系也可以递推,从而知道对于一个格子位置,和它有偏序关系的一定是行列均大于它或均小于它的格子;无偏序关系的一定是行列一个大于它一个小于它或相反的格子。

    最后在反链上跑最长路即可

    const int N=1007;
    int n,m;
    int a[N][N];
    lxl f[N][N];
    int main() {
    	int T;
    	read(T);
    	while(T--){
    		read(n);read(m);
    		memset(f,0,sizeof f);
    		memset(a,0,sizeof a);
    		rep(i,1,n){
    			rep(j,1,m){
    				read(a[i][j]);
    			}
    		}
    		
    		rep(i,1,n){
    			drp(j,m,1){
    				f[i][j]=max(f[i-1][j+1]+a[i][j],max(f[i-1][j],f[i][j+1]));//前一个是(i,j)本身的反链长,后两个是可以继承的反链长度
    			}
    		}
    		out(f[n][1],'
    ');
    	}
    	return 0;
    }
    

    本文来自博客园,作者:{2519},转载请注明原文链接:https://www.cnblogs.com/QQ2519/p/15458696.html

  • 相关阅读:
    C博客01——分支,顺序结构
    博客园,我昔日的精神家园
    201720182 20179207 《网络攻防技术》第二周作业
    python 面试题(2)
    python 面试题(1)
    201720182 20179207 《网络攻防技术》第一周作业
    201720182 20179207 《网络攻防技术》第三周作业
    201720182 20179207 《网络攻防技术》黑客与工具
    python socket和简单tcp通信实现
    201720182 20179207 《网络攻防技术》python简明教程(110)
  • 原文地址:https://www.cnblogs.com/QQ2519/p/15458696.html
Copyright © 2020-2023  润新知