• ACM-ICPC 2018 南京赛区网络预赛 Magical Girl Haze 最短路


    ACM-ICPC 2018 南京赛区网络预赛 Magical Girl Haze 最短路

    题面

    There are N cities in the country, and M directional roads from uu to v(1(le) u, v(le) n)v(1≤u,v≤n). Every road has a distance (c_i). Haze is a Magical Girl that lives in City 11, she can choose no more than KK roads and make their distances become 00. Now she wants to go to City NN, please help her calculate the minimum distance.

    Input
    The first line has one integer T((1 le Tle 5)), then following TT cases.

    For each test case, the first line has three integers N, MN,M and KK.

    Then the following MM lines each line has three integers, describe a road, (U_i), (V_i), (C_i). There might be multiple edges between uu and vv.

    It is guaranteed that (N le 100000, M le 200000, K le 10N≤100000,M≤200000,K≤10, 0 le C_i le 1e9≤C i≤1e9). There is at least one path between City 1 and City N.

    Output
    For each test case, print the minimum distance.

    题意:

    求1到n的最短路,路径中的k跳路可以不花费代价
    

    思路:

    考虑k很小,我们可以用dist[i][k]表示到i点,使用了k次路径免费的最短路径,二维最短路。然后魔改dijkstra。听说别人spfa被卡了。。。
    
    #include<bits/stdc++.h>
    
    using namespace std;
    typedef long long LL;
    const int MAXN = 1e5 + 10;
    const int MAXM = 2e5 + 10;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    
    int T, n, m, first[MAXN], sign, k;
    
    struct Edge {
        int to, next;
        LL w;
    } edge[MAXM * 2];
    
    void init() {
        for(int i = 1; i <= n; i ++ ) {
            first[i] = 0;
        }
        sign = 1;
    }
    
    void add_edge(int u,int v,int w) {
        edge[sign].to = v;
        edge[sign].w  = w;
        edge[sign].next = first[u];
        first[u] = sign ++;
    }
    
    struct Node {
        int to, cnt;
        LL cost;
        Node(){}
        Node(int f, int s, int c):to(f), cost(s), cnt(c) {}
        friend bool operator < (const Node &a, const Node &b) {
            return a.cost > b.cost;
        }
    };
    
    LL dis[MAXN][11];
    
    bool vis[MAXN][11];
    
    LL dijkstra(int s) {
        priority_queue<Node> heap;
        memset(vis, 0, sizeof(vis));
        memset(dis, 0x3f, sizeof(dis));
        heap.push(Node(s, 0, 0));
        while(!heap.empty()) {
            Node now = heap.top();
            heap.pop();
            if(!vis[now.to][now.cnt]) {
                vis[now.to][now.cnt] = 1;
                dis[now.to][now.cnt] = now.cost;
                for(int i = first[now.to]; i; i = edge[i].next) {
                    int to = edge[i].to;
                    LL ww = edge[i].w;
                    if(now.cnt + 1 <= k && !vis[to][now.cnt + 1]) {
                        heap.push(Node(to, now.cost, now.cnt + 1));
                    }
                    if(now.cnt <= k && !vis[to][now.cnt]) {
                        heap.push(Node(to, now.cost + ww, now.cnt));
                    }
                }
            }
        }
        LL ans = INF;
        for(int i = 0; i <= k; i++ ) {
            ans = min(ans, dis[n][i]);
        }
        return ans;
    }
    
    
    int main() {
    
        while(~scanf("%d", &T)) {
            while(T--) {
                scanf("%d %d %d", &n, &m, &k);
                init();
                for(int i = 1; i <= m; i++ ) {
                    int u, v, w;
                    scanf("%d %d %d", &u, &v, &w);
                    add_edge(u, v, w);
                }
                printf("%lld
    ", dijkstra(1));
            }
        }
    
    
        return 0;
    }
    
  • 相关阅读:
    Linux ssh命令详解
    25个必须记住的SSH命令
    什么是SSH 以及常见的ssh 功能
    SSH简介及两种远程登录的方法
    SSH协议(1)-工作原理及过程
    Linux下查看文件内容的命令
    Spring MVC @RequestMapping注解详解
    Spring MVC入门示例
    Spring 基于xml配置方式的事务
    spring @Transactional注解参数详解
  • 原文地址:https://www.cnblogs.com/Q1143316492/p/9571546.html
Copyright © 2020-2023  润新知