• Circles Inside a Square(几何题)


    题目描述

    You have 8 circles of equal size and you want to pack them inside a square. You want to minimize the size of the square. The following figure illustrates the minimum way of packing 8 circles inside a square:
    在这里插入图片描述
    Given the radius, r, find the area of the minimum square into which 8 circles of that radius can be packed.

    输入

    There is one input line, it consists of a positive real number (between 0.001 and 1000, inclusive) denoting the radius, r.

    输出

    Print the area of the minimum square where 8 circles of radius r can be packed. Print 5 digits after the decimal. Your output is considered correct if it is within ±0.00001 of the judge’s output.

    样例输入

    0.1
    

    样例输出

    0.34383
    

    题意:
    将八个圆放到一个正方形中,给出圆的半径求出正方形的面积
    相信很多人都会去推公式小声说我也去推了公式 ,后来采用了偷工减料的方法,根据给出的数据推出可能会成立的结论,没想到还真过了[手动滑稽]

    #pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")
    #pragma GCC optimize("Ofast")
    #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #pragma comment(linker, "/stack:200000000")
    #pragma GCC optimize (2)
    #pragma G++ optimize (2)
    #include <bits/stdc++.h>
    #include <algorithm>
    #include <map>
    #include <queue>
    #include <set>
    #include <stack>
    #include <string>
    #include <vector>
    using namespace std;
    #define wuyt main
    typedef long long ll;
    #define HEAP(...) priority_queue<__VA_ARGS__ >
    #define heap(...) priority_queue<__VA_ARGS__,vector<__VA_ARGS__ >,greater<__VA_ARGS__ > >
    template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
    template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
    //#define getchar()(p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
    //char buf[(1 << 21) + 1], *p1 = buf, *p2 = buf;
    ll read(){ll c = getchar(),Nig = 1,x = 0;while(!isdigit(c) && c!='-')c = getchar();
    if(c == '-')Nig = -1,c = getchar();
    while(isdigit(c))x = ((x<<1) + (x<<3)) + (c^'0'),c = getchar();
    return Nig*x;}
    #define read read()
    const ll inf = 1e15;
    const int maxn = 2e5 + 7;
    const int mod = 1e9 + 7;
    #define start int wuyt()
    #define end return 0
    /**bool prime(int n)
    {
        if(n==1||n==1)
            return false;
        for(int i=2;i*i<=n;i++)
        {
            if(n%i==0) return false;
        }
        return true;
    }
    int num[maxn],n,cnt,judge[maxn];
    void shai()
    {
        for(int i=2;i<=maxn;i++)
        {
            if(!judge[i])
                num[++cnt]=i;
            for(int j=1;j<=cnt&&num[j]*i<=maxn;j++)
            {
                judge[i*num[j]]=1;
                if(i%num[j]==0)
                    break;
            }
        }
    }**/
    start{
        ///
        double r;
        scanf("%lf",&r);
        double ans=0;
        ans+=r*4;
        printf("%f
    ",r);
        ans+=(1.8637*r);
        printf("%f
    ",ans);
        printf("%.7f
    ",ans*ans);
    	end;
    }
    
    

    解释一下这里的1.8367的来源:
    r==0.1时的结果0.34383进行开方,减去四倍的半径就是0.18637然后目前得到的这个数就是比较难球求的中间部分的长度,它必然和半径有关,而且这个关系肯定是成特定比例的因此呢,中间难求的部分和2r的关系通过这个关系来解决0.18637/(2r)等于1.8637
    上面给出的代码有测试输出

  • 相关阅读:
    hdu-6435
    Wannafly挑战赛22-A/B/C
    POJ-3041-建图/二分图匹配/网络流
    nyoj-1015-二分图判定
    hdu-6406-dp+ST表
    2017.3.27 集成modeler后的一些主要路径(持续更新)
    2016.3.23 集成新版activiti-modeler(5.17+)到项目中
    2017.3.14 activiti实战--第二十章--REST服务
    2017.2.28 activiti实战--第七章--Spring容器集成应用实例(五)普通表单
    2017.2.28 activiti实战--第六章--任务表单(二)外置表单
  • 原文地址:https://www.cnblogs.com/PushyTao/p/13144218.html
Copyright © 2020-2023  润新知