Happy King
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 821 Accepted Submission(s): 179
Problem Description
There are n cities and n−1 roads in Byteland, and they form a tree. The cities are numbered 1 through n. The population in i-th city is pi.
Soda, the king of Byteland, wants to travel from a city u to another city v along the shortest path. Soda would be happy if the difference between the maximum and minimum population among the cities passed is **no larger than** D. So, your task is to tell Soda how many different pairs (u,v) that can make him happy.
Soda, the king of Byteland, wants to travel from a city u to another city v along the shortest path. Soda would be happy if the difference between the maximum and minimum population among the cities passed is **no larger than** D. So, your task is to tell Soda how many different pairs (u,v) that can make him happy.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤500), indicating the number of test cases. For each test case:
The first line contains two integers n and D (1≤n≤100000,1≤D≤109).
The second line contains n integers p1,p2,…,pn (0≤pi≤109).
Each of the following n−1 lines describing roads contains two integers u,v (1≤u,v≤n,u≠v) meaning that there is a road connecting city u and city v.
It is guaranteed that the total number of vertices in the input doesn't exceed 5×105.
The first line contains two integers n and D (1≤n≤100000,1≤D≤109).
The second line contains n integers p1,p2,…,pn (0≤pi≤109).
Each of the following n−1 lines describing roads contains two integers u,v (1≤u,v≤n,u≠v) meaning that there is a road connecting city u and city v.
It is guaranteed that the total number of vertices in the input doesn't exceed 5×105.
Output
For each test case, output the number of different pairs that can make Soda happy.
Sample Input
1
3 3
1 2 3
1 2
2 3
Sample Output
6
/* hdu 5314 动态树 problem: 给你一个树,求有多少对(u,v)使u->v路径上面的最大值减去最小值不大于limit solve: 最开始想的是用树链剖分维护最大最小值,结果超时 卒。。 然后看别人说动态树比树链剖分快一点,于是去学习两天动态树,然后用其维护最大最小值 卒。。 感觉没什么思路 - - 后来发现别人维护一个树的size.维持树中的最大最小值的差不大于limit 所以先按照权值排序,用两个指针. 如果 当前值-最左边值(l) > limit,就将l从这个树中除去 然后将当前节点连接到树上面,即判断与其相连的点哪些在树上面(可以用个数组来判断). 大致思路如此,然后就是如何维护size. 首先动态树中的重链是一直变化的,通常我们是用splay来维护重链上面的值, 所以需要outsize来维护哪些不在重链上面的点. 而 重链 和 普通链会在ACCESS的时候发生变化,于是在其过程中维护一下. 参考:http://blog.csdn.net/u013368721/article/details/47086899 hhh-2016-08-21 09:16:05 */ #pragma comment(linker,"/STACK:124000000,124000000") #include <algorithm> #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <vector> #include <map> #define lson ch[0] #define rson ch[1] #define ll long long #define clr(a,b) memset(a,b,sizeof(a)) #define key_val ch[ch[root][1]][0] using namespace std; const int maxn = 300100; const int INF = 1e9+10; ll ans ; struct Node* null; struct Node { Node* ch[2] ; Node* fa; int Size ; int Outsize; int val,rev; void newnode(int v) { val = v; Size = 1 ; Outsize = 0; fa = ch[0] = ch[1] = null ; rev = 0; } void update_rev() { if(this == null) return ; swap(ch[0],ch[1]); rev ^= 1; } void push_up () { if(this == null) return ; Size = ch[0]->Size + 1 + ch[1]->Size + ch[0]->Outsize + ch[1]->Outsize; // cout << ch[0]->Size <<" " <<ch[1] <<Size <<endl; } void push_down() { if(this == null) return ; if(rev) { ch[0]->update_rev(); ch[1]->update_rev(); rev = 0; } } void link_child ( Node* to , int d ) { ch[d] = to; to->fa = this ; } int isroot() { return fa == null || this != fa->ch[0] && this != fa->ch[1] ; } void down() { if ( !isroot () ) fa->down () ; push_down () ; } void Rotate ( int d ) { Node* f = fa ; Node* ff = fa->fa ; f->link_child ( ch[d] , !d ) ; if ( !f->isroot () ) { if ( ff->ch[0] == f ) ff->link_child ( this , 0 ) ; else ff->link_child ( this , 1 ) ; } else fa = ff ; link_child (f,d) ; f->push_up () ; } void splay () { down () ; while ( !isroot () ) { if ( fa->isroot () ) { this == fa->ch[0] ? Rotate ( 1 ) : Rotate ( 0 ) ; } else { if ( fa == fa->fa->ch[0] ) { this == fa->ch[0] ? fa->Rotate ( 1 ) : Rotate ( 0 ) ; Rotate ( 1 ) ; } else { this == fa->ch[1] ? fa->Rotate ( 0 ) : Rotate ( 1 ) ; Rotate ( 0 ) ; } } } push_up () ; } void access() { Node* now = this ; Node* x = null ; while ( now != null ) { // cout <<"now:"<< now->val <<" f:" <<x->val <<endl; now->splay () ; now->Outsize += (now->ch[1]->Size+now->ch[1]->Outsize); now->Outsize -= (x->Size + x->Outsize); now->link_child ( x , 1 ); now->push_up () ; x = now ; now = now->fa ; } splay() ; } void make_root() { access(); update_rev(); } void cut() { access(); ch[0]->fa = null; ch[0] = null; push_up(); } void cut(Node* to) { make_root(); to->cut(); } void link(Node* to) { make_root(); to->make_root(); fa = to; // cout << Size <<" " << Outsize <<endl; ans += (ll)(to->Size + to->Outsize)*(Size+Outsize); // cout << ans <<endl; to->Outsize += (Size + Outsize); push_up(); } }; Node memory_pool[maxn]; Node* now; Node* node[maxn]; struct Edge { int to,next; }edge[maxn << 2]; int head[maxn],tot; int vis[maxn]; void Clear() { now = memory_pool; now->newnode(-INF); null = now ++; null->Size = 0; tot = 0; memset(head,-1,sizeof(head)); memset(vis,0,sizeof(vis)); } void add_edge(int u,int v) { edge[tot].to = v,edge[tot].next = head[u],head[u] = tot ++; } struct Point { int id,v; }po[maxn]; bool cmp(Point a,Point b) { return a.v < b.v; } int main() { int T,n,cas = 1,limit; int x,a,b; // freopen("in.txt","r",stdin); scanf("%d",&T); while(T--) { Clear(); scanf("%d%d",&n,&limit); ans = 0; for(int i = 1; i <= n; i++) { scanf("%d",&x); now->newnode(x); node[i] = now++; po[i].v = x,po[i].id = i; } sort(po+1,po+1+n,cmp); for(int i = 1; i < n; i++) { scanf("%d%d",&a,&b); add_edge(a,b); add_edge(b,a); } int l= 1; for(int i =1;i <= n;i++) { while(l <= i && po[i].v - po[l].v > limit) { int u = po[l].id; for(int j = head[u];~j;j = edge[j].next) { int v = edge[j].to; if(!vis[v]) continue; node[u]->cut(node[v]); } vis[u] = 0; ++l; } int u = po[i].id; for(int j = head[u];~j; j = edge[j].next) { // cout <<edge[j].to <<endl; int v = edge[j].to; if(!vis[v]) continue; node[u]->link(node[v]); } vis[u] = 1; } printf("%I64d ",ans*2); } return 0; }