• hdu 1130 How Many Trees?(Catalan数)


    How Many Trees?

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3317    Accepted Submission(s): 1922

    Problem Description
    A binary search tree is a binary tree with root k such that any node v reachable from its left has label (v) <label (k) and any node w reachable from its right has label (w) > label (k). It is a search structure which can find a node with label x in O(n log n) average time, where n is the size of the tree (number of vertices). 

    Given a number n, can you tell how many different binary search trees may be constructed with a set of numbers of size n such that each element of the set will be associated to the label of exactly one node in a binary search tree? 
     
    Input
    The input will contain a number 1 <= i <= 100 per line representing the number of elements of the set.
     
    Output
    You have to print a line in the output for each entry with the answer to the previous question.
     
    Sample Input
    1 2 3
     
    Sample Output
    1 2 5
     
    Source

    题意:

    对于给定的n,求n个节点能构成多少种二叉树,左子树的值 < 根节点 < 右子树


    思路:Catalan数 + 大整数

    import java.math.BigInteger;
    import java.util.Scanner;
    
    public class Main {
    
    	static BigInteger []F =  new BigInteger[105];
    	public static void ini()
    	{
    		F[1] = BigInteger.valueOf(1);
    		for(int i = 2;i < 105;i++)
    		{
    			F[i] = F[i-1].multiply(BigInteger.valueOf(i*4-2)).divide(BigInteger.valueOf(i+1));
    		}
    	}
    	public static void main(String[] args) {
    		// TODO 自动生成的方法存根
    		ini();
    		Scanner Reader = new Scanner(System.in);
    		int x;
    		while(Reader.hasNext())
    		{
    			x = Reader.nextInt();
    			System.out.println(F[x]);
    		}     
    	}
    
    }
    

      



  • 相关阅读:
    C++之类和对象
    PHP程序设计基础
    PHP函数和MySQL数据库
    HTML语言基础
    文件和目录1(文件属性和权限)
    文件IO
    查找
    使用tcpdump抓包实例
    导入模块的2种方法
    ansible启用sudo执行命令
  • 原文地址:https://www.cnblogs.com/Przz/p/5409661.html
Copyright © 2020-2023  润新知