• hdu 5667 BestCoder Round #80 矩阵快速幂


    Sequence

     
     Accepts: 59
     
     Submissions: 650
     Time Limit: 2000/1000 MS (Java/Others)
     
     Memory Limit: 65536/65536 K (Java/Others)
    Problem Description

        Holion August will eat every thing he has found.

        Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.

    f_n=left{egin{matrix} 1 ,&n=1 a^b,&n=2 a^bf_{n-1}^cf_{n-2},&otherwise end{matrix} ight.fn=1,ab,abfn1cfn2,n=1n=2otherwise

        He gives you 5 numbers n,a,b,c,p,and he will eat f_nfn foods.But there are only p foods,so you should tell him f_nfn mod p.

    Input

        The first line has a number,T,means testcase.

        Each testcase has 5 numbers,including n,a,b,c,p in a line.

    1le T le 10,1le nle 10^{18},1le a,b,cle 10^9    1T10,1n1018,1a,b,c109,pp is a prime number,and ple 10^9+7p109+7.

    Output

        Output one number for each case,which is f_nfn mod p.

    Sample Input
    1
    5 3 3 3 233
    Sample Output
    190


    /*
    hdu 5667 BestCoder Round #80 矩阵快速幂
    
    F[n] = 1 (n == 1)
    F[n] = a^b (n == 2)
    F[n] = a^b * F[n-1]^c *F [n-2]
    
    最开始试了下化简公式,但是无果. 也从矩阵快速幂上面考虑过(毕竟 F[n]与 F[n-1],F[n-2]有关)
    但是发现是 乘法运算不知道怎么弄了(2b了)
    
    能够发现运算时基于a的次方的,当a的次方相乘时就变成了他们的次方相加 (好气 TAT)
    于是乎 a^g[n] = a^(b + c*g[n-1] * g[n-2])
    然后用类似快速幂求斐波那契数的方法即可
    
    F[n]    F[n-1] 1         C  1  0
    F[n-1]  F[n-2] 1    *    1  0  0
                             b  0  1
    hhh-2016-04-18 20:36:40
    */
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <map>
    #include <algorithm>
    #include <functional>
    #include <math.h>
    using namespace std;
    #define lson  (i<<1)
    #define rson  ((i<<1)|1)
    typedef long long ll;
    const int maxn = 100040;
    
    struct Matrix
    {
        ll ma[3][3];
        Matrix()
        {
            memset(ma,0,sizeof(ma));
        }
    };
    
    Matrix mult(Matrix ta,Matrix tb, ll mod)
    {
        Matrix tc;
        for(int i = 0; i < 3; i++)
        {
            for(int j = 0; j < 3; j++)
            {
                tc.ma[i][j] = 0;
                for(int k = 0; k < 3; k++){
                    tc.ma[i][j] += (ta.ma[i][k] * tb.ma[k][j])%mod;
                    tc.ma[i][j] %= mod;
                }
            }
        }
        return tc;
    }
    
    Matrix Mat_pow(Matrix ta,ll n,ll mod)
    {
        Matrix t;
        for(int i = 0; i < 3; i++)
            t.ma[i][i] = 1;
        while(n)
        {
            if(n & 1) t = mult(t,ta,mod);
            ta = mult(ta,ta,mod);
            n >>= 1;
        }
        return t;
    }
    
    ll pow_mod(ll a,ll n,ll mod)
    {
        ll t = 1;
        a %= mod ;
        while(n)
        {
            if(n & 1) t = t*a%mod;
            a = a*a%mod;
            n >>= 1;
        }
        return t;
    }
    
    Matrix mat;
    Matrix an;
    ll a,b,c;
    void ini(ll mod)
    {
        mat.ma[0][0] = c,mat.ma[0][1] = 1,mat.ma[0][2] = 0;
        mat.ma[1][0] = 1,mat.ma[1][1] = 0,mat.ma[1][2] = 0;
        mat.ma[2][0] = b,mat.ma[2][1] = 0,mat.ma[2][2] = 1;
    
    
        an.ma[0][0] = (b+b*c%mod)%mod,an.ma[0][1] = b,an.ma[0][2] = 1;
        an.ma[1][0] = b,an.ma[1][1] = 0,an.ma[2][1] = 1;
    }
    ll mod,n;
    
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%I64d%I64d%I64d%I64d%I64d",&n,&a,&b,&c,&mod);
            a%=mod,b%=mod,c%=mod;
            ini(mod-1);
            if(n == 1)
            {
                printf("1
    ");
            }
            else if(n == 2)
                printf("%I64d
    ",pow_mod(a,b,mod));
            else
            {
                mat = Mat_pow(mat,n-3,mod-1);
                mat = mult(an,mat,mod-1);
                ll ci = mat.ma[0][0];
                //cout << ci <<endl;
                printf("%I64d
    ",pow_mod(a,ci,mod));
            }
        }
        return 0;
    }



  • 相关阅读:
    mvc session验证
    mvc登录验证
    PHP中return的用法
    mvc框架类
    php mvc实现比赛列表
    php MySQLDB类
    php header的几种用法
    php isset()与empty()的使用
    jenkins+springboot+svn linux 自动化部署
    基于netty的websocket例子
  • 原文地址:https://www.cnblogs.com/Przz/p/5409555.html
Copyright © 2020-2023  润新知