先假设只能向上导电,这样我们可以DFS一遍得到树根带电的概率,得到 (O(n^2)) 做法
对于非树根点,考虑一下(父子间)变化量,O(n)
注意不要除0,将要除0时特殊处理一下
#include <cstdio>
#include <cctype>
const double eps=1e-10;
const int MAXN=500111;
char gc(){
static char buf[1<<16], *s=buf, *t=buf;
if(s==t) t=(s=buf)+fread(buf, 1, 1<<16, stdin);
if(s==t) return EOF;
return *s++;
}
int read(){
int x=0, f=1;char ch=gc();
while(!isdigit(ch)) {if(ch=='-')f=-f;ch=gc();}
while(isdigit(ch)) {x=x*10+(ch-'0');ch=gc();}
return x*f;
}
int N;
struct Vert{
int FE;
double p, f, t, s;
double cal(double k){
return p+(1.0-p)*(1.0-k);
}
} V[MAXN];
struct Edge{
int y, next;
double p;
} E[MAXN<<1];
int Ecnt;
void addE(int a, int b, double c){
++Ecnt;
E[Ecnt].y=b;E[Ecnt].next=V[a].FE;V[a].FE=Ecnt;E[Ecnt].p=c;
}
void DFS(int at, int f){
V[at].t=1.0;
for(int k=V[at].FE, to;k;k=E[k].next){
to=E[k].y;
if(to==f) continue;
DFS(to, at);
V[at].t*=1.0-E[k].p*V[to].f;
}
V[at].f=V[at].cal(V[at].t);
}
void DFS(int at, double pf, int f){
V[at].t*=(1.0-pf);
V[at].s=V[at].cal(V[at].t);
for(int k=V[at].FE, to;k;k=E[k].next){
to=E[k].y;
if(to==f) continue;
DFS(to, (1.0-V[to].f<eps)?0.0:E[k].p*V[at].cal(V[at].t/(1.0-E[k].p*V[to].f)), at);
}
}
int main(){
N=read();
for(int i=1, a, b, c;i<N;++i){
a=read();b=read();c=read();
addE(a, b, (double)(c)/100.0);
addE(b, a, (double)(c)/100.0);
}
for(int i=1;i<=N;++i) V[i].p=(double)(read())/(100.0);
DFS(1, 0);
DFS(1, 0.0, 0);
//for(int i=1;i<=N;++i) printf("%lf ", V[i].s);
//puts("");
double Ans=0.0;
for(int i=1;i<=N;++i) Ans+=V[i].s;
printf("%.6lf
", Ans);
return 0;
}
/*
3
1 2 50
1 3 50
50 0 0
*/