E. XOR and Favorite Number
Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
Input
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Output
Print m lines, answer the queries in the order they appear in the input.
Examples
input
6 2 3
1 2 1 1 0 3
1 6
3 5
output
7
0
input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
output
9
4
4
Note
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题意:询问区间[l,r]内有多少个子区间,其亦或和等于k。
思路:莫队,对于区间[a,b],区间[a,b+1]的ans等于[a,b]的ans加上区间[a,b]内OXR[b+1]^k的个数
对于[a,b]的亦或和,即为XOR[b]^XOR[a-1]
XOR[b]^XOR[a-1] == k <==> XOR[b]^k == XOR[a-1]
因此寻找有多少个XOR[a-1]满足XOR[b]^XOR[a-1] == k ,即寻找有多少个XOR[b]^k
使用一个cnt数组记录当前状态下不同区间亦或和的值出现的次数。
1 //2017-11-14 2 #include <cstdio> 3 #include <cstring> 4 #include <iostream> 5 #include <algorithm> 6 7 using namespace std; 8 9 const int N = 1100000; 10 const int LEN = 1000; 11 12 int n, m, k, L, R, a[N], XOR[N], block[N]; 13 long long ans, ANS[N], cnt[N]; 14 struct Node{ 15 int l, r, id; 16 bool operator<(const Node x) const { 17 if(block[l] == block[x.l]) 18 return r < x.r; 19 return block[l] < block[x.l]; 20 } 21 }q[N]; 22 23 void add(int x){ 24 ans += cnt[XOR[x]^k]; 25 cnt[XOR[x]]++; 26 } 27 28 void del(int x){ 29 cnt[XOR[x]]--; 30 ans -= cnt[XOR[x]^k]; 31 } 32 33 int main() 34 { 35 //freopen("input.txt", "r", stdin); 36 while(~scanf("%d%d%d", &n, &m, &k)){ 37 XOR[0] = 0; 38 for(int i = 1; i <= n; i++){ 39 scanf("%d", &a[i]); 40 XOR[i] = XOR[i-1] ^ a[i]; 41 block[i] = (i-1)/LEN; 42 } 43 for(int i = 0; i < m; i++){ 44 scanf("%d%d", &q[i].l, &q[i].r); 45 q[i].id = i; 46 } 47 sort(q, q+m); 48 L = 1, R = 0, ans = 0; 49 cnt[0] = 1; 50 for(int i = 0; i < m; i++){ 51 while(L < q[i].l){ 52 del(L-1); 53 L++; 54 } 55 while(L > q[i].l){ 56 L--; 57 add(L-1); 58 } 59 while(R < q[i].r){ 60 R++; 61 add(R); 62 } 63 while(R > q[i].r){ 64 del(R); 65 R--; 66 } 67 ANS[q[i].id] = ans; 68 } 69 for(int i = 0; i < m; i++) 70 printf("%lld ", ANS[i]); 71 } 72 73 return 0; 74 }