1017 - Exact cover
Time Limit: 15s Memory Limit: 128MB
Special Judge Submissions: 7270 Solved: 3754
DESCRIPTION
- There is an N*M matrix with only 0s and 1s, (1 <= N,M <= 1000). An exact cover is a selection of rows such that every column has a 1 in exactly one of the selected rows. Try to find out the selected rows.
INPUT
- There are multiply test cases. First line: two integers N, M; The following N lines: Every line first comes an integer C(1 <= C <= 100), represents the number of 1s in this row, then comes C integers: the index of the columns whose value is 1 in this row.
OUTPUT
- First output the number of rows in the selection, then output the index of the selected rows. If there are multiply selections, you should just output any of them. If there are no selection, just output "NO".
SAMPLE INPUT
-
6 7 3 1 4 7 2 1 4 3 4 5 7 3 3 5 6 4 2 3 6 7 2 2 7
SAMPLE OUTPUT
-
3 2 4 6
HINT
SOURCE
- dupeng
- 精确覆盖问题,dancing links模板
-
1 //2017-03-09 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 6 using namespace std; 7 8 const int N = 1010; 9 const int M = 1010; 10 const int maxnode = N*M; 11 12 struct DLX 13 { 14 int n, m, sz; 15 int U[maxnode], D[maxnode], R[maxnode], L[maxnode], Row[maxnode], Col[maxnode]; 16 int H[N], S[M]; 17 int ansd, ans[N]; 18 19 void init(int nn, int mm) 20 { 21 n = nn; m = mm; 22 for(int i = 0; i <= m; i++) 23 { 24 S[i] = 0; 25 U[i] = D[i] = i; 26 L[i] = i-1; 27 R[i] = i+1; 28 } 29 R[m] = 0; L[0] = m; 30 sz = m; 31 for(int i = 1; i <= n; i++)H[i] = -1; 32 } 33 34 void link(int r, int c) 35 { 36 ++S[Col[++sz] = c]; 37 Row[sz] = r; 38 D[sz] = D[c]; 39 U[D[c]] = sz; 40 U[sz] = c; 41 D[c] = sz; 42 if(H[r] < 0)H[r] = L[sz] = R[sz] = sz; 43 else{ 44 R[sz] = R[H[r]]; 45 L[R[H[r]]] = sz; 46 L[sz] = H[r]; 47 R[H[r]] = sz; 48 } 49 } 50 51 void Remove(int c) 52 { 53 L[R[c]] = L[c]; R[L[c]] = R[c]; 54 for(int i = D[c]; i != c; i = D[i]) 55 for(int j = R[i]; j != i; j = R[j]) 56 { 57 U[D[j]] = U[j]; 58 D[U[j]] = D[j]; 59 --S[Col[j]]; 60 } 61 } 62 63 void resume(int c) 64 { 65 for(int i = U[c]; i != c; i = U[i]) 66 for(int j = L[i]; j != i; j = L[j]) 67 ++S[Col[U[D[j]]=D[U[j]]=j]]; 68 L[R[c]] = R[L[c]] = c; 69 } 70 71 bool Dance(int d) 72 { 73 if(R[0] == 0) 74 { 75 printf("%d ", d); 76 for(int i = 0; i < d; i++) 77 if(i == d-1)printf("%d ", ans[i]); 78 else printf("%d ", ans[i]); 79 return true; 80 } 81 int c = R[0]; 82 for(int i = R[0]; i != 0; i = R[i]) 83 if(S[i] < S[c])c = i; 84 Remove(c); 85 for(int i = D[c]; i != c; i = D[i]) 86 { 87 ans[d] = Row[i]; 88 for(int j = R[i]; j != i; j = R[j])Remove(Col[j]); 89 if(Dance(d+1))return true; 90 for(int j = L[i]; j != i; j = L[j])resume(Col[j]); 91 } 92 resume(c); 93 return false; 94 } 95 }dlx; 96 97 int main() 98 { 99 int n, m, c, tmp; 100 while(scanf("%d%d", &n, &m)!=EOF) 101 { 102 dlx.init(n, m); 103 for(int i = 1; i <= n; i++) 104 { 105 scanf("%d", &c); 106 for(int j = 0; j < c; j++) 107 { 108 scanf("%d", &tmp); 109 dlx.link(i, tmp); 110 } 111 } 112 if(!dlx.Dance(0))printf("NO "); 113 } 114 115 return 0; 116 }