• POJ1050(dp)


    To the Max

    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 46788   Accepted: 24774

    Description

    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. 
    As an example, the maximal sub-rectangle of the array: 

    0 -2 -7 0 
    9 2 -6 2 
    -4 1 -4 1 
    -1 8 0 -2 
    is in the lower left corner: 

    9 2 
    -4 1 
    -1 8 
    and has a sum of 15. 

    Input

    The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

    Output

    Output the sum of the maximal sub-rectangle.

    Sample Input

    4
    0 -2 -7 0 9 2 -6 2
    -4 1 -4  1 -1
    
    8  0 -2

    Sample Output

    15

     最大子段和的二维版本,把第i行到第j行合并成一行,做法就和一维的一样了,只要枚举i和j,找出最大值即为答案。

     1 //2016.8.21
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 
     6 using namespace std;
     7 
     8 const int N = 105;
     9 const int inf = 0x3f3f3f3f;
    10 int a[N][N];
    11 
    12 int main()
    13 {
    14     int n, tmp;
    15     while(scanf("%d", &n)!=EOF)
    16     {
    17         for(int i = 0; i < n; i++)
    18               for(int j = 0; j < n; j++)
    19                   scanf("%d", &a[i][j]);
    20         
    21         int ans = -inf;
    22         for(int i = 0; i < n-1; i++)
    23         {
    24 //把第j行合并到第i行,求出第i行到第j行的最大子段和**************
    25             for(int j = i; j < n; j++)
    26             {
    27                 tmp = 0;
    28                 for(int k = 0; k < n; k++)
    29                 {
    30                     if(j > i) a[i][k]+=a[j][k];//把矩阵合并为一维的数组
    31                     if(tmp > 0) tmp += a[i][k];
    32                     else tmp = a[i][k];
    33                     ans = max(ans, tmp);
    34                 }
    35             }
    36 //**************************************************************            
    37         }
    38 
    39         cout<<ans<<endl;
    40     }
    41 
    42     return 0;
    43 }
  • 相关阅读:
    高并发的优化策略
    Linux Ctrl+c与ctrl+z的区别
    数据库连接池的工作原理
    JDBC数据库连接池原理
    JSP页面批量选择&全选操作&选择回显
    通过火狐谋智查询API
    通过console.log()打印window对象的属性、方法、事件
    制作 首页
    JavaScript 函数参数
    JavaScript 函数
  • 原文地址:https://www.cnblogs.com/Penn000/p/5792378.html
Copyright © 2020-2023  润新知