• POJ2479(dp)


    Maximum sum

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 39089   Accepted: 12221

    Description

    Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:

    Your task is to calculate d(A).

    Input

    The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input. 
    Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.

    Output

    Print exactly one line for each test case. The line should contain the integer d(A).

    Sample Input

    1
    
    10
    1 -1 2 2 3 -3 4 -4 5 -5

    Sample Output

    13

    Hint

    In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer. 

    Huge input,scanf is recommended.

    分别求出两端开始的最大子段和,然后枚举左右两段的分界,找出最大值。

     1 //2016.8.21
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 
     6 using namespace std;
     7 
     8 const int N = 50005;
     9 const int inf = 0x3f3f3f3f;
    10 int a[N], dpl[N], dpr[N];//dpl[i]表示从左往右到第i位的最大子段和,dpr[i]表示从右往左到第i位的最大子段和
    11 
    12 int main()
    13 {
    14     int T, n;
    15     cin>>T;
    16     while(T--)
    17     {
    18         scanf("%d", &n);
    19         for(int i = 0; i < n; i++)
    20         {
    21             scanf("%d", &a[i]);
    22         }
    23         memset(dpl, 0, sizeof(dpl));
    24         memset(dpr, 0, sizeof(dpr));
    25 //从左往右扫        
    26 //*************************************************        
    27         dpl[0] = a[0];
    28         for(int i = 1; i < n; i++)
    29             if(dpl[i-1]>0) dpl[i] = dpl[i-1]+a[i];
    30             else dpl[i] = a[i];
    31         for(int i = 1; i < n; i++)
    32             if(dpl[i]<dpl[i-1])
    33                   dpl[i] = dpl[i-1];
    34 //从右往左扫        
    35 //*************************************************        
    36         dpr[n-1] = a[n-1];
    37         for(int i = n-2; i>=0; i--)
    38             if(dpr[i+1]>0) dpr[i] = dpr[i+1]+a[i];
    39             else dpr[i] = a[i];
    40         for(int i = n-2; i>=0; i--)
    41             if(dpr[i]<dpr[i+1])
    42                   dpr[i] = dpr[i+1];
    43 //*************************************************        
    44         int ans = -inf;
    45         for(int i = 0; i < n-1; i++)
    46         {
    47             ans = max(ans, dpl[i]+dpr[i+1]);
    48         }
    49         cout<<ans<<endl;
    50     }
    51 
    52     return 0;
    53 }
  • 相关阅读:
    Algs4-2.2.1给出原地归并排序merge的排序过程
    Algs4-2.2.2给出自顶向下归并排序的排序过程
    Algs4-2.1.38不同类型的元素
    Algs4-2.1.36不均匀的数据
    Algs4-2.1.37部分有序
    Algs4-2.1.35不均匀的概率分布
    Algs4-2.1.34罕见情况
    升级python到2.7版本pip不可用
    随机验证码
    python文件操作
  • 原文地址:https://www.cnblogs.com/Penn000/p/5792148.html
Copyright © 2020-2023  润新知